Flexible graphene oxide/polyacrylonitrile composite films with efficient ultraviolet shielding and high transparency for the protection of paper-based artifacts
{"title":"Flexible graphene oxide/polyacrylonitrile composite films with efficient ultraviolet shielding and high transparency for the protection of paper-based artifacts","authors":"Cheng Teng, Xi-Min Liu, Mingjun Lin, Jianlin Li","doi":"10.1515/npprj-2022-0074","DOIUrl":null,"url":null,"abstract":"Abstract Paper-based artifacts, such as ink and wash paintings, paper cuts, etc., when exposed in environment for a long time, are prone to embrittling, yellowing and ageing because of ultraviolet light and weather elements. In a museum, special measurements are adopted to avoid these damages, but for common households, a functional coating is a good solution. However, this is not an easy task as the coating must be removable and cannot damage the articles. Graphene oxide (GO) has the potential as ultraviolet shielding material for the protection of paper-based artifacts, but the application of monolithic GO coatings on paper-based artifacts is difficult. In this work, feasible GO/polyacrylonitrile composite films were prepared and their protection properties for rice paper were explored experimentally. When GO loading reached 2 %, the UV-A and UV-B blocking percentages of the film were 57.47 % and 70.86 %, respectively, with a visible light transmittance of 77.09 %. These films also performed good moisture resistance. With a good flexibility, they could be easily transferred onto and peeled off the rice paper surface without damaging the paper texture and patterns on it. These films basically meet the demand of paper-based artifacts protection.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 1","pages":"111 - 119"},"PeriodicalIF":0.9000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0074","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Paper-based artifacts, such as ink and wash paintings, paper cuts, etc., when exposed in environment for a long time, are prone to embrittling, yellowing and ageing because of ultraviolet light and weather elements. In a museum, special measurements are adopted to avoid these damages, but for common households, a functional coating is a good solution. However, this is not an easy task as the coating must be removable and cannot damage the articles. Graphene oxide (GO) has the potential as ultraviolet shielding material for the protection of paper-based artifacts, but the application of monolithic GO coatings on paper-based artifacts is difficult. In this work, feasible GO/polyacrylonitrile composite films were prepared and their protection properties for rice paper were explored experimentally. When GO loading reached 2 %, the UV-A and UV-B blocking percentages of the film were 57.47 % and 70.86 %, respectively, with a visible light transmittance of 77.09 %. These films also performed good moisture resistance. With a good flexibility, they could be easily transferred onto and peeled off the rice paper surface without damaging the paper texture and patterns on it. These films basically meet the demand of paper-based artifacts protection.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.