Ran Yang, Jigang Zhang, Chenghao Zhou, Wenli Chen, Jiguang Chen, Yang Zhao
{"title":"Theoretical analysis of aluminum honeycomb sandwich panel supported by reinforced concrete wall under low-speed impact load","authors":"Ran Yang, Jigang Zhang, Chenghao Zhou, Wenli Chen, Jiguang Chen, Yang Zhao","doi":"10.1515/secm-2022-0150","DOIUrl":null,"url":null,"abstract":"Abstract Honeycomb materials are widely used across engineering fields. The use of honeycomb sandwich structures as energy dissipation and impact protection materials for reinforced concrete components in the field of civil engineering is a novel concept. Therefore, it is of great significance to study the energy absorption characteristics, dynamic response theoretical model, and collapse energy dissipation theory for the use of honeycomb sandwich structures as protective materials. Based on the large-scale low-speed pendulum impact test and the corresponding finite element model, this study establishes an ideal model for the honeycomb sandwich panel under the impact of a square flat head and gives the corresponding theoretical derivation. At the same time, it puts forward a method to estimate the energy consumption and dynamic crushing distance based on the energy consumption theory angle of the covering layer.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"265 - 273"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0150","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Honeycomb materials are widely used across engineering fields. The use of honeycomb sandwich structures as energy dissipation and impact protection materials for reinforced concrete components in the field of civil engineering is a novel concept. Therefore, it is of great significance to study the energy absorption characteristics, dynamic response theoretical model, and collapse energy dissipation theory for the use of honeycomb sandwich structures as protective materials. Based on the large-scale low-speed pendulum impact test and the corresponding finite element model, this study establishes an ideal model for the honeycomb sandwich panel under the impact of a square flat head and gives the corresponding theoretical derivation. At the same time, it puts forward a method to estimate the energy consumption and dynamic crushing distance based on the energy consumption theory angle of the covering layer.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.