{"title":"Regulation of STUB1 expression and its biological significance in mouse Sertoli cells","authors":"Tao Li, Chao Zheng, W. Han, Zhen-Zhen Chen","doi":"10.1080/19396368.2022.2027554","DOIUrl":null,"url":null,"abstract":"Abstract STIP1 Homology and U-Box Containing Protein 1 (STUB1), a ubiquitin E3 ligase initially involved in immune responses, has recently emerged as a pleiotropic regulator of different biological systems, including skeletal and male reproduction systems. On the latter, a homozygous mutation in the STUB1 gene has been identified in patients with hypogonadism. However, the pattern of expression and biological actions of STUB1 in testis remains so far unexplored. Herein, we report analyses on the testicular expression of STUB1 in human testes with impaired spermatogenesis and paracrine regulation of STUB1 expression in mouse testis development and the direct effects of ablation STUB1 on Sertoli cell (SC) functions. STUB1 was expressed abundantly in pachytene spermatocytes and SCs, and weakly in spermatogonia and differentiating spermatids in normal human testis. In contrast, Sertoli-specific expression of STUB1 was significantly decreased in the human testes with impaired spermatogenesis. Throughout postnatal development of mouse testis, however, STUB1 was expressed exclusively in the nuclei of the functionally mature SCs. The adjacent germ cell (GC)-derived IL-1α overtly regulated STUB1 expression through promoting the ETS domain transcription factor Elk-1 (ELK1)-mediated transactivation. Importantly, ablation of endogenous STUB1 caused lipid accumulation and senescence in GC co-incubated SCs. Together with previous reports on the stimulatory effects of IL-1α on cell senescence, our findings suggest that STUB1 may serve as an important negative feedback signaling to modulate the magnitude of GCs-derived IL-1α, which is normally maintained at low levels within testis.","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"68 1","pages":"298 - 313"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2022.2027554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract STIP1 Homology and U-Box Containing Protein 1 (STUB1), a ubiquitin E3 ligase initially involved in immune responses, has recently emerged as a pleiotropic regulator of different biological systems, including skeletal and male reproduction systems. On the latter, a homozygous mutation in the STUB1 gene has been identified in patients with hypogonadism. However, the pattern of expression and biological actions of STUB1 in testis remains so far unexplored. Herein, we report analyses on the testicular expression of STUB1 in human testes with impaired spermatogenesis and paracrine regulation of STUB1 expression in mouse testis development and the direct effects of ablation STUB1 on Sertoli cell (SC) functions. STUB1 was expressed abundantly in pachytene spermatocytes and SCs, and weakly in spermatogonia and differentiating spermatids in normal human testis. In contrast, Sertoli-specific expression of STUB1 was significantly decreased in the human testes with impaired spermatogenesis. Throughout postnatal development of mouse testis, however, STUB1 was expressed exclusively in the nuclei of the functionally mature SCs. The adjacent germ cell (GC)-derived IL-1α overtly regulated STUB1 expression through promoting the ETS domain transcription factor Elk-1 (ELK1)-mediated transactivation. Importantly, ablation of endogenous STUB1 caused lipid accumulation and senescence in GC co-incubated SCs. Together with previous reports on the stimulatory effects of IL-1α on cell senescence, our findings suggest that STUB1 may serve as an important negative feedback signaling to modulate the magnitude of GCs-derived IL-1α, which is normally maintained at low levels within testis.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.