Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Nonlinear Processes in Geophysics Pub Date : 2022-06-15 DOI:10.5194/npg-29-207-2022
K. Helfrich, L. Ostrovsky
{"title":"Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation","authors":"K. Helfrich, L. Ostrovsky","doi":"10.5194/npg-29-207-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Nonlinear oceanic internal solitary waves are considered under the influence of the combined effects of saturating nonlinearity, Earth's rotation, and horizontal depth inhomogeneity. Here the basic model is the extended Korteweg–de Vries equation that includes both quadratic and cubic nonlinearity (the Gardner equation) with additional terms incorporating slowly varying depth and weak rotation. The complicated interplay between these different factors is explored using an approximate adiabatic approach and then through numerical solutions of the governing variable depth, i.e., the rotating Gardner model. These results are also compared to analysis in the Korteweg–de Vries limit to highlight the effect of the cubic nonlinearity. The study explores several particular cases considered in the literature that included some of these factors to illustrate limitations. Solutions are made to illustrate the relevance of this extended Gardner model for realistic oceanic conditions.\n","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/npg-29-207-2022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Nonlinear oceanic internal solitary waves are considered under the influence of the combined effects of saturating nonlinearity, Earth's rotation, and horizontal depth inhomogeneity. Here the basic model is the extended Korteweg–de Vries equation that includes both quadratic and cubic nonlinearity (the Gardner equation) with additional terms incorporating slowly varying depth and weak rotation. The complicated interplay between these different factors is explored using an approximate adiabatic approach and then through numerical solutions of the governing variable depth, i.e., the rotating Gardner model. These results are also compared to analysis in the Korteweg–de Vries limit to highlight the effect of the cubic nonlinearity. The study explores several particular cases considered in the literature that included some of these factors to illustrate limitations. Solutions are made to illustrate the relevance of this extended Gardner model for realistic oceanic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转和地形对旋转Gardner方程控制的内部孤立波的影响
摘要非线性海洋内部孤立波是在饱和非线性、地球自转和水平深度不均匀性的综合影响下考虑的。这里的基本模型是扩展的Korteweg–de Vries方程,该方程包括二次和三次非线性(Gardner方程),以及包含缓慢变化深度和弱旋转的附加项。使用近似绝热方法,然后通过控制变量深度的数值解,即旋转Gardner模型,探讨了这些不同因素之间的复杂相互作用。这些结果还与Korteweg–de Vries极限中的分析进行了比较,以突出三次非线性的影响。本研究探讨了文献中考虑的几个特定案例,其中包括一些因素,以说明其局限性。给出了解决方案,以说明这种扩展的Gardner模型与现实海洋条件的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nonlinear Processes in Geophysics
Nonlinear Processes in Geophysics 地学-地球化学与地球物理
CiteScore
4.00
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.
期刊最新文献
Convex optimization of initial perturbations toward quantitative weather control Selecting and weighting dynamical models using data-driven approaches Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC) Multi-dimensional, Multi-Constraint Seismic Inversion of Acoustic Impedance Using Fuzzy Clustering Concepts A quest for precipitation attractors in weather radar archives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1