Study on piezoelectric ceramic under different pressurization conditions and circuitry

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Electroceramics Pub Date : 2021-09-18 DOI:10.1007/s10832-021-00268-1
Nitin Yadav, Rajesh Kumar
{"title":"Study on piezoelectric ceramic under different pressurization conditions and circuitry","authors":"Nitin Yadav,&nbsp;Rajesh Kumar","doi":"10.1007/s10832-021-00268-1","DOIUrl":null,"url":null,"abstract":"<div><p>The fluctuating force from the dynamic system applied to the piezoelectric material gives electric energy as an output. In the present work, the effect of pressurizing the diaphragm type piezoelectric elements at the same time and at a different time (depicting the condition of in-phase and out-of-phase) has been studied. Furthermore, to combine the outputs, the use of series and parallel circuitry has been studied before the rectification (AC to DC) and after the rectification. The material of the piezoelectric used in the experiments was lead zirconate titanate (PZT). The maximum power output of 362.8 µW is obtained when the two piezoelectric elements were pressurized in-phase by a cyclic force of amplitude 400 mA and 17 Hz frequency, their signals rectified and then combined through the parallel circuit. The high power output is at the natural frequency of the mechanical system.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"47 3","pages":"79 - 88"},"PeriodicalIF":1.7000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-021-00268-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 3

Abstract

The fluctuating force from the dynamic system applied to the piezoelectric material gives electric energy as an output. In the present work, the effect of pressurizing the diaphragm type piezoelectric elements at the same time and at a different time (depicting the condition of in-phase and out-of-phase) has been studied. Furthermore, to combine the outputs, the use of series and parallel circuitry has been studied before the rectification (AC to DC) and after the rectification. The material of the piezoelectric used in the experiments was lead zirconate titanate (PZT). The maximum power output of 362.8 µW is obtained when the two piezoelectric elements were pressurized in-phase by a cyclic force of amplitude 400 mA and 17 Hz frequency, their signals rectified and then combined through the parallel circuit. The high power output is at the natural frequency of the mechanical system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电陶瓷在不同增压条件和电路下的性能研究
动力系统施加到压电材料上的波动力产生电能作为输出。本文研究了膜片式压电元件在同一时间和不同时间(描述同相和非同相情况)的加压效果。此外,为了组合输出,在整流之前(交流到直流)和整流之后,研究了串联和并联电路的使用。实验中使用的压电材料为锆钛酸铅(PZT)。在振幅为400 mA、频率为17 Hz的循环力作用下,对两个压电元件进行同相加压,并将其信号整流后通过并联电路组合,可获得362.8µW的最大功率输出。大功率输出处于机械系统的固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
期刊最新文献
Honoring a Legacy – Heartfelt Thanks to Our Former Editor-in-Chief! The effects of MnO2 on the microstructure and electrical properties based on ZnO-Bi2O3-Sb2O3-Cr2O3-Co2O3 varistors Synthesis, microstructure and characterization of Ultra-low permittivity and dielectric loss ZnO-B2O3-SiO2 glass/SiO2 composites for LTCC application Comparative analysis of magnetocaloric effect in La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 and 0.1) polycrystalline manganites: experimental vs. theoretical determination Investigation of phase structure and electrical properties of PMN-PSN-PNN–PZT ceramics with different PNN content
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1