{"title":"A multilayer-multiplexer network processing scheme based on the dendritic integration in a single neuron","authors":"Jhunlyn Lorenzo, S. Binczak, S. Jacquir","doi":"10.3934/Neuroscience.2022006","DOIUrl":null,"url":null,"abstract":"Advances in neuronal studies suggest that a single neuron can perform integration functions previously associated only with neuronal networks. Here, we proposed a dendritic abstraction employing a dynamic thresholding function that models the spatiotemporal dendritic integration process of a CA3 pyramidal neuron. First, we developed an input-output quantification process that considers the natural neuronal response and the full range of dendritic dynamics. We analyzed the IO curves and demonstrated that dendritic integration is branch-specific and dynamic rather than the commonly employed static nonlinearity. Second, we completed the integration model by creating a dendritic abstraction incorporating the spatiotemporal characteristics of the dendrites. Furthermore, we predicted the dendritic activity in each dendritic layer and the corresponding somatic firing activity by employing the dendritic abstraction in a multilayer-multiplexer information processing scheme comparable to a neuronal network. The subthreshold activity influences the suprathreshold regions via its dynamic threshold, a parameter that is dependent not only on the driving force but also on the number of activated synapses along the dendritic branch. An individual dendritic branch performs multiple integration modes by shifting from supralinear to linear then to sublinear. The abstraction includes synaptic input location-dependent voltage delay and decay, time-dependent linear summation, and dynamic thresholding function. The proposed dendritic abstraction can be used to create multilayer-multiplexer neurons that consider the spatiotemporal properties of the dendrites and with greater computational capacity than the conventional schemes.","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"9 1","pages":"76 - 113"},"PeriodicalIF":3.1000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2022006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in neuronal studies suggest that a single neuron can perform integration functions previously associated only with neuronal networks. Here, we proposed a dendritic abstraction employing a dynamic thresholding function that models the spatiotemporal dendritic integration process of a CA3 pyramidal neuron. First, we developed an input-output quantification process that considers the natural neuronal response and the full range of dendritic dynamics. We analyzed the IO curves and demonstrated that dendritic integration is branch-specific and dynamic rather than the commonly employed static nonlinearity. Second, we completed the integration model by creating a dendritic abstraction incorporating the spatiotemporal characteristics of the dendrites. Furthermore, we predicted the dendritic activity in each dendritic layer and the corresponding somatic firing activity by employing the dendritic abstraction in a multilayer-multiplexer information processing scheme comparable to a neuronal network. The subthreshold activity influences the suprathreshold regions via its dynamic threshold, a parameter that is dependent not only on the driving force but also on the number of activated synapses along the dendritic branch. An individual dendritic branch performs multiple integration modes by shifting from supralinear to linear then to sublinear. The abstraction includes synaptic input location-dependent voltage delay and decay, time-dependent linear summation, and dynamic thresholding function. The proposed dendritic abstraction can be used to create multilayer-multiplexer neurons that consider the spatiotemporal properties of the dendrites and with greater computational capacity than the conventional schemes.
期刊介绍:
AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.