{"title":"Folate-targeted PTEN/AKT/P53 signaling pathway promotes apoptosis in breast cancer cells","authors":"Hexian Wang, Qi Fan, Longlong Zhang, Danli Shi, Haibo Wang, Shou-Qin Wang, Bangjian Bian","doi":"10.1515/pteridines-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract Objective Folate deficiency is closely related to the occurrence of human tumors and plays an important role in cell growth, differentiation, repair, and host defense. We studied the effects of folic acid on the apoptosis of breast cancer cells (MDA-MB-231) and on the activity of the PTEN/AKT/P53 signaling pathway in breast cancer cells. Methods Breast cancer cells (MDA-MB-231) were treated with folate alone or in combination with a PTEN specific inhibitor, SF1670. Cell viability was detected by a MTT assay, and the expression levels of apoptosis-related proteins and PTEN/AKT/P53 signaling pathway were detected via Western blot analysis. Rate of apoptosis was measured via cytometry. Results Folic acid inhibited the cell viability of MDAMB-231 cells and the expressions of Bcl-2 and p-AKT proteins and upregulate the expression of Bax, PTEN, and P53 proteins, thereby inducing apoptosis in these cells. SF1670 treatment inhibited the expressions of Bcl-2 and p-AKT protein and upregulate Bax, PTEN, and P53 protein expression. Conclusion Folic acid has cytotoxic effects on MDAMB-231 cells and can induce apoptosis by targeting the PTEN/AKT/P53 signaling pathway.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"31 1","pages":"158 - 164"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/pteridines-2020-0020","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2020-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Objective Folate deficiency is closely related to the occurrence of human tumors and plays an important role in cell growth, differentiation, repair, and host defense. We studied the effects of folic acid on the apoptosis of breast cancer cells (MDA-MB-231) and on the activity of the PTEN/AKT/P53 signaling pathway in breast cancer cells. Methods Breast cancer cells (MDA-MB-231) were treated with folate alone or in combination with a PTEN specific inhibitor, SF1670. Cell viability was detected by a MTT assay, and the expression levels of apoptosis-related proteins and PTEN/AKT/P53 signaling pathway were detected via Western blot analysis. Rate of apoptosis was measured via cytometry. Results Folic acid inhibited the cell viability of MDAMB-231 cells and the expressions of Bcl-2 and p-AKT proteins and upregulate the expression of Bax, PTEN, and P53 proteins, thereby inducing apoptosis in these cells. SF1670 treatment inhibited the expressions of Bcl-2 and p-AKT protein and upregulate Bax, PTEN, and P53 protein expression. Conclusion Folic acid has cytotoxic effects on MDAMB-231 cells and can induce apoptosis by targeting the PTEN/AKT/P53 signaling pathway.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.