Owen P. Missen , Ella R. Lausberg , Joël Brugger , Barbara Etschmann , Stuart J. Mills , Koichi Momma , Rahul Ram , Mihoko Maruyama , Xi-Ya Fang , Erik Melchiorre , Christopher G. Ryan , Edgar E. Villalobos-Portillo , Hiram Castillo-Michel , Kiyofumi Nitta , Oki Sekizawa , Jeremiah Shuster , Santonu K. Sanyal , Andrew Frierdich , Steve Hunt , Yuka Tsuri , Maria A.D. Rea
{"title":"Natural nanoparticles of the critical element tellurium","authors":"Owen P. Missen , Ella R. Lausberg , Joël Brugger , Barbara Etschmann , Stuart J. Mills , Koichi Momma , Rahul Ram , Mihoko Maruyama , Xi-Ya Fang , Erik Melchiorre , Christopher G. Ryan , Edgar E. Villalobos-Portillo , Hiram Castillo-Michel , Kiyofumi Nitta , Oki Sekizawa , Jeremiah Shuster , Santonu K. Sanyal , Andrew Frierdich , Steve Hunt , Yuka Tsuri , Maria A.D. Rea","doi":"10.1016/j.hazl.2022.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Tellurium (Te) is a Critical Element that is toxic to microorganisms and humans alike, most notably in its soluble oxyanionic forms. To date, the biogeochemical behaviour of Te in Earth’s surface environment is largely unknown. Here, we report the discovery of elemental Te nanoparticles (Te NPs) in regolith samples using Single-Particle Inductively Coupled Plasma Mass Spectroscopy. Tellurium NPs were detected in both proximal and distal locations (bulk concentrations >4 ppm) relative to weathering Te ores. Synchrotron X-ray Fluorescence Mapping and X-ray Absorption Spectroscopy showed that bulk Te in the regolith is generally associated with Fe (oxyhydr)oxides and clay minerals, and mostly found in the oxidation states +IV and +VI. Although Te NPs account for less than 2 mol‰ of Te in our samples, their detection provides evidence for the active biogeochemical cycling of Te in surface environments. Te NPs are reactive and are likely to have formed in situ in distal samples, most likely via microbially-mediated reduction. Hence, the presence of Te NPs indicates the potential for release of toxic soluble forms of Te even in environments where most Te is “fixed” in forms such as Fe (oxyhydr)oxides that have low solubility and poor bioavailability.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"3 ","pages":"Article 100053"},"PeriodicalIF":6.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666911022000065/pdfft?md5=1f4507d892913376289e3bdf27601fdb&pid=1-s2.0-S2666911022000065-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911022000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Tellurium (Te) is a Critical Element that is toxic to microorganisms and humans alike, most notably in its soluble oxyanionic forms. To date, the biogeochemical behaviour of Te in Earth’s surface environment is largely unknown. Here, we report the discovery of elemental Te nanoparticles (Te NPs) in regolith samples using Single-Particle Inductively Coupled Plasma Mass Spectroscopy. Tellurium NPs were detected in both proximal and distal locations (bulk concentrations >4 ppm) relative to weathering Te ores. Synchrotron X-ray Fluorescence Mapping and X-ray Absorption Spectroscopy showed that bulk Te in the regolith is generally associated with Fe (oxyhydr)oxides and clay minerals, and mostly found in the oxidation states +IV and +VI. Although Te NPs account for less than 2 mol‰ of Te in our samples, their detection provides evidence for the active biogeochemical cycling of Te in surface environments. Te NPs are reactive and are likely to have formed in situ in distal samples, most likely via microbially-mediated reduction. Hence, the presence of Te NPs indicates the potential for release of toxic soluble forms of Te even in environments where most Te is “fixed” in forms such as Fe (oxyhydr)oxides that have low solubility and poor bioavailability.