Effect of the composition and production process parameters on the microstructure, residual stresses, and mechanical and corrosion properties of gold alloys used in industrial jewelry processes
C. Cason, L. Pezzato, K. Brunelli, F. Furlan, M. Dabalà
{"title":"Effect of the composition and production process parameters on the microstructure, residual stresses, and mechanical and corrosion properties of gold alloys used in industrial jewelry processes","authors":"C. Cason, L. Pezzato, K. Brunelli, F. Furlan, M. Dabalà","doi":"10.1007/s13404-017-0215-y","DOIUrl":null,"url":null,"abstract":"<p>Gold alloys, used in the production of both hollow and solid gold chains, influence the optical and mechanical properties of various gold products. Also, the microstructure of the alloys strongly influences the mechanical properties, which have a key role in both the machinability and quality of the plates. In the present work, different compositions of gold alloys and various industrial deformation processes (annealing and rolling steps) were analyzed and optimized. The change in the production parameters and in the compositions of the alloys may lead to the formation of different levels of residual stresses within the material, which can generate a variation in the behavior of gold sheets. The microstructures after the different production processes were analyzed by OM and SEM observations, whereas the variation of mechanical properties by microhardness tests. The residual stresses were evaluated using XRD analysis and the corrosion resistance by potentiodynamic polarization tests. The results showed that with the optimized process, a higher homogeneity of the microstructure, with an increase of the quality of semi-finished products and without ruptures under roller trains, was obtained. Moreover, the grain refiner was changed and a totally non-magnetic gold alloy was developed. Finally, to improve the weldability of the final chains, a different gold welding alloy, with a lower melting point, was developed and optimized.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":"50 3","pages":"259 - 266"},"PeriodicalIF":2.2000,"publicationDate":"2017-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-017-0215-y","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-017-0215-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1
Abstract
Gold alloys, used in the production of both hollow and solid gold chains, influence the optical and mechanical properties of various gold products. Also, the microstructure of the alloys strongly influences the mechanical properties, which have a key role in both the machinability and quality of the plates. In the present work, different compositions of gold alloys and various industrial deformation processes (annealing and rolling steps) were analyzed and optimized. The change in the production parameters and in the compositions of the alloys may lead to the formation of different levels of residual stresses within the material, which can generate a variation in the behavior of gold sheets. The microstructures after the different production processes were analyzed by OM and SEM observations, whereas the variation of mechanical properties by microhardness tests. The residual stresses were evaluated using XRD analysis and the corrosion resistance by potentiodynamic polarization tests. The results showed that with the optimized process, a higher homogeneity of the microstructure, with an increase of the quality of semi-finished products and without ruptures under roller trains, was obtained. Moreover, the grain refiner was changed and a totally non-magnetic gold alloy was developed. Finally, to improve the weldability of the final chains, a different gold welding alloy, with a lower melting point, was developed and optimized.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.