Yan Zhao , Weiyuan Zhang , Jinbo Ouyang , Guangyang Hou , Vamsi Krishna Kamaraju , Brian Glennon
{"title":"Estimation of secondary nucleation kinetics of benzoic acid in batch crystallizer","authors":"Yan Zhao , Weiyuan Zhang , Jinbo Ouyang , Guangyang Hou , Vamsi Krishna Kamaraju , Brian Glennon","doi":"10.1016/j.partic.2023.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The nucleation and growth kinetics of benzoic acid<span><span> were determined in a population balance model, describing the seeded batch antisolvent crystallization process. The process analytical technologies (PATs) were utilized to record the evolution of chord length distributions (CLDs) in solid phase together with the concentration decay in liquid phase, which provided essential experimental information for parameter estimation. The model was solved using standard method of moments based on the moments calculated from CLDs and solute concentration. A developed model, incorporating the nucleation and crystal growth as functions of both </span>supersaturation and solvent composition, has been constructed by fitting the zeroth moment of particles and concentration trends. The determined kinetic parameters were consequently validated against a new experiment with a different flow rate, indicating that the developed model predicted crystallization process reasonably well. This work illustrates the strategy in construct a population balance model for further simulation, model-based optimization and control studies of benzoic acid in antisolvent crystallization.</span></p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"87 ","pages":"Pages 232-239"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200123001992","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The nucleation and growth kinetics of benzoic acid were determined in a population balance model, describing the seeded batch antisolvent crystallization process. The process analytical technologies (PATs) were utilized to record the evolution of chord length distributions (CLDs) in solid phase together with the concentration decay in liquid phase, which provided essential experimental information for parameter estimation. The model was solved using standard method of moments based on the moments calculated from CLDs and solute concentration. A developed model, incorporating the nucleation and crystal growth as functions of both supersaturation and solvent composition, has been constructed by fitting the zeroth moment of particles and concentration trends. The determined kinetic parameters were consequently validated against a new experiment with a different flow rate, indicating that the developed model predicted crystallization process reasonably well. This work illustrates the strategy in construct a population balance model for further simulation, model-based optimization and control studies of benzoic acid in antisolvent crystallization.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.