On the impact of network size and average degree on the robustness of centrality measures

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2020-10-20 DOI:10.1017/nws.2020.37
Christoph Martin, Peter Niemeyer
{"title":"On the impact of network size and average degree on the robustness of centrality measures","authors":"Christoph Martin, Peter Niemeyer","doi":"10.1017/nws.2020.37","DOIUrl":null,"url":null,"abstract":"Abstract Measurement errors are omnipresent in network data. Most studies observe an erroneous network instead of the desired error-free network. It is well known that such errors can have a severe impact on network metrics, especially on centrality measures: a central node in the observed network might be less central in the underlying, error-free network. The robustness is a common concept to measure these effects. Studies have shown that the robustness primarily depends on the centrality measure, the type of error (e.g., missing edges or missing nodes), and the network topology (e.g., tree-like, core-periphery). Previous findings regarding the influence of network size on the robustness are, however, inconclusive. We present empirical evidence and analytical arguments indicating that there exist arbitrary large robust and non-robust networks and that the average degree is well suited to explain the robustness. We demonstrate that networks with a higher average degree are often more robust. For the degree centrality and Erdős–Rényi (ER) graphs, we present explicit formulas for the computation of the robustness, mainly based on the joint distribution of node degrees and degree changes which allow us to analyze the robustness for ER graphs with a constant average degree or increasing average degree.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nws.2020.37","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2020.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Measurement errors are omnipresent in network data. Most studies observe an erroneous network instead of the desired error-free network. It is well known that such errors can have a severe impact on network metrics, especially on centrality measures: a central node in the observed network might be less central in the underlying, error-free network. The robustness is a common concept to measure these effects. Studies have shown that the robustness primarily depends on the centrality measure, the type of error (e.g., missing edges or missing nodes), and the network topology (e.g., tree-like, core-periphery). Previous findings regarding the influence of network size on the robustness are, however, inconclusive. We present empirical evidence and analytical arguments indicating that there exist arbitrary large robust and non-robust networks and that the average degree is well suited to explain the robustness. We demonstrate that networks with a higher average degree are often more robust. For the degree centrality and Erdős–Rényi (ER) graphs, we present explicit formulas for the computation of the robustness, mainly based on the joint distribution of node degrees and degree changes which allow us to analyze the robustness for ER graphs with a constant average degree or increasing average degree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络规模和平均度对中心性测度稳健性的影响
摘要测量误差在网络数据中无处不在。大多数研究观察到的是错误的网络,而不是期望的无错误网络。众所周知,这种错误会对网络度量产生严重影响,尤其是对中心性度量:观察到的网络中的中心节点在底层无错误网络中可能不那么中心。稳健性是衡量这些影响的一个常见概念。研究表明,鲁棒性主要取决于中心性度量、错误类型(例如,缺失边缘或缺失节点)和网络拓扑(例如,树状、核心-外围)。然而,先前关于网络大小对鲁棒性的影响的研究结果是不确定的。我们提出了经验证据和分析论点,表明存在任意大型鲁棒和非鲁棒网络,并且平均度很适合解释鲁棒性。我们证明了平均度越高的网络往往越稳健。对于度中心性和Erdõs–Rényi(ER)图,我们给出了鲁棒性的显式计算公式,主要基于节点度和度变化的联合分布,这使我们能够分析平均度不变或平均度增加的ER图的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1