Catholytes that mimic ionic liquids

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2023-08-11 DOI:10.1038/s41560-023-01335-3
Ryoichi Kanega, Takashi Funaki, Akihiro Ohira
{"title":"Catholytes that mimic ionic liquids","authors":"Ryoichi Kanega, Takashi Funaki, Akihiro Ohira","doi":"10.1038/s41560-023-01335-3","DOIUrl":null,"url":null,"abstract":"It has been difficult for organic redox flow batteries to simultaneously achieve high capacity and long cycle life. Now, a catholyte design is shown to have the potential to overcome these challenges.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"8 10","pages":"1065-1066"},"PeriodicalIF":49.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-023-01335-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

It has been difficult for organic redox flow batteries to simultaneously achieve high capacity and long cycle life. Now, a catholyte design is shown to have the potential to overcome these challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类似离子液体的阴极液
有机氧化还原液流电池一直难以同时实现高容量和长循环寿命。现在,一种阴极电解质设计被证明具有克服这些挑战的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Power price stability and the insurance value of renewable technologies Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management Citizen-financed solar projects The closing longevity gap between battery electric vehicles and internal combustion vehicles in Great Britain Biomass exclusion must be weighed against benefits of carbon supply in European energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1