Improving the Electrical Properties of Zinc-Tin Oxide Thin-Film Transistors by Additive using Electrohydrodynamic Jet Technology

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Korean Journal of Metals and Materials Pub Date : 2023-08-05 DOI:10.3365/kjmm.2023.61.8.589
Woon-Seop Choi, Young Jik Lee, Yong Jae Kim
{"title":"Improving the Electrical Properties of Zinc-Tin Oxide Thin-Film Transistors by Additive using Electrohydrodynamic Jet Technology","authors":"Woon-Seop Choi, Young Jik Lee, Yong Jae Kim","doi":"10.3365/kjmm.2023.61.8.589","DOIUrl":null,"url":null,"abstract":"Oxide thin-film transistors (TFTs) are important semiconductor materials for display backplanes. To fabricate flexible displays, not only display modes but also TFTs are important. Flexible TFTs are especially needed for flexible displays, and related processes need to be developed. Printing is a good choice for the new fabrication of oxide TFTs. Electrohydrodynamic (EHD) jet printing is an excellent alternative for making flexible TFTs. To improve the electrical properties of oxide TFTs using EHD jet printing, propylene monomethyl ether acetate (PGMEA) was added to a zinc-tin oxide (ZTO) formulation. EHD jet printing was performed by Taylor cone jet mode with parameters of 2.4 kV and 0.064 µL/s to obtain uniform thin films at a substrate temperature of 50oC. Much improved TFT properties were obtained, including a mobility of 7.11 cm2/V s, on-to-off current ratio of 2.8 × 106 and subthreshold slope of 1.44 V/dec-1 for ZTO TFT with 5 wt% of PGMEA, and a mobility of 1.43 cm2/V s, on-to-off current ratio of 2.7 × 105 and subthreshold slope of 1.32 V/dec-1 for the ZTO TFT. Almost no hysteresis behavior was observed in the oxide TFTs with added PGMEA. We report a new way to improve the electrical properties of oxide TFTs, by the simple addition of PGMEA.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.8.589","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxide thin-film transistors (TFTs) are important semiconductor materials for display backplanes. To fabricate flexible displays, not only display modes but also TFTs are important. Flexible TFTs are especially needed for flexible displays, and related processes need to be developed. Printing is a good choice for the new fabrication of oxide TFTs. Electrohydrodynamic (EHD) jet printing is an excellent alternative for making flexible TFTs. To improve the electrical properties of oxide TFTs using EHD jet printing, propylene monomethyl ether acetate (PGMEA) was added to a zinc-tin oxide (ZTO) formulation. EHD jet printing was performed by Taylor cone jet mode with parameters of 2.4 kV and 0.064 µL/s to obtain uniform thin films at a substrate temperature of 50oC. Much improved TFT properties were obtained, including a mobility of 7.11 cm2/V s, on-to-off current ratio of 2.8 × 106 and subthreshold slope of 1.44 V/dec-1 for ZTO TFT with 5 wt% of PGMEA, and a mobility of 1.43 cm2/V s, on-to-off current ratio of 2.7 × 105 and subthreshold slope of 1.32 V/dec-1 for the ZTO TFT. Almost no hysteresis behavior was observed in the oxide TFTs with added PGMEA. We report a new way to improve the electrical properties of oxide TFTs, by the simple addition of PGMEA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电流体动力射流技术提高锌锡氧化物薄膜晶体管的电性能
氧化薄膜晶体管是重要的显示背板半导体材料。为了制造柔性显示器,除了显示模式外,tft也很重要。柔性显示尤其需要柔性tft,相关工艺有待开发。印刷是新型氧化tft制备的一个很好的选择。电流体动力(EHD)喷射打印是制造柔性tft的一种极好的替代方法。为了提高EHD喷射打印氧化tft的电性能,将丙烯单甲基醚乙酸酯(PGMEA)加入到氧化锌锡(ZTO)配方中。采用泰勒锥喷射模式,参数为2.4 kV, 0.064µL/s,在衬底温度为50℃下,获得均匀的EHD薄膜。得到了显著改善的TFT性能,包括迁移率为7.11 cm2/V s,开关电流比为2.8 × 106,亚阈值斜率为1.44 V/dec-1, ZTO TFT的迁移率为1.43 cm2/V s,开关电流比为2.7 × 105,亚阈值斜率为1.32 V/dec-1。在添加了PGMEA的氧化tft中几乎没有观察到迟滞现象。我们报道了一种通过简单地添加PGMEA来改善氧化tft电学性能的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
期刊最新文献
Effect of Single Crystal Growth and Solidification Grain Boundaries on Weld Solidification Cracking Behavior of CMSX-4 Superalloy Material Selection: Material Perception Data Analysis Using Clustering Analysis and Association Rule Analysis of Data Mining Transient Liquid-Phase Sinter-Bonding Characteristics of a 5 um Cu@Sn Particle-Based Preform for High-Speed Die Bonding of Power Devices Research on Flexible Transparent Conductive Electrodes Based on Ultra-Thin Ag in the Form of Grain Boundary with IZO Layer Comparison of Weldability and Microstructure in Resistance Spot Welding of Aluminum 5052-H32 Alloy and Al 6014-T4 Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1