Arturo Yishai Prieto-Vázquez, A. Cuautle-Estrada, Mario Alberto Grave-Capistrán, O. Ramírez, C. R. Torres-SanMiguel
{"title":"Fractal Analysis and FEM Assessment of Soft Tissue Affected by Fibrosis","authors":"Arturo Yishai Prieto-Vázquez, A. Cuautle-Estrada, Mario Alberto Grave-Capistrán, O. Ramírez, C. R. Torres-SanMiguel","doi":"10.3390/fractalfract7090661","DOIUrl":null,"url":null,"abstract":"This research shows an image processing method to determine the liver tissue’s mechanical behavior under physiological damage caused by fibrosis pathology. The proposed method consists of using a liver tissue CAD/CAE model obtained from a tomography of the human abdomen, where the diaphragmatic surface of this tissue is compressed by a moving flat surface. For this work, two tools were created—the first to analyze the deformations and the second to analyze the displacements of the liver tissue. Gibbon and MATLAB® were used for numerical analysis with the FEBio computer program. Although deformation in the scenario can be treated as an orthogonal coordinate system, the relationship between the total change in height (measured) and the deformation was obtained. The outcomes show liver tissue behavior as a hyperelastic model; the Mooney–Rivlin mathematical characterization model was proposed in this case. Another method to determine the level of physiological damage caused by fibrosis is fractal analysis. This work used the Hausdorff fractal dimension (HFD) method to calculate and analyze the 2D topological surface.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
This research shows an image processing method to determine the liver tissue’s mechanical behavior under physiological damage caused by fibrosis pathology. The proposed method consists of using a liver tissue CAD/CAE model obtained from a tomography of the human abdomen, where the diaphragmatic surface of this tissue is compressed by a moving flat surface. For this work, two tools were created—the first to analyze the deformations and the second to analyze the displacements of the liver tissue. Gibbon and MATLAB® were used for numerical analysis with the FEBio computer program. Although deformation in the scenario can be treated as an orthogonal coordinate system, the relationship between the total change in height (measured) and the deformation was obtained. The outcomes show liver tissue behavior as a hyperelastic model; the Mooney–Rivlin mathematical characterization model was proposed in this case. Another method to determine the level of physiological damage caused by fibrosis is fractal analysis. This work used the Hausdorff fractal dimension (HFD) method to calculate and analyze the 2D topological surface.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.