{"title":"Adaptive functions in an agent-based model of an economic system","authors":"David White","doi":"10.1177/10597123221095644","DOIUrl":null,"url":null,"abstract":"Agent-based models, with a history reaching back to the 1940s, have been cited as a useful technique for planning economic development and simulating the effect of economic crashes. These models offer an insightful alternative to the traditional techniques of mathematical modelling. Understanding how different designs of agent-based models change simulation outcomes will be useful for modellers of economic and other simulation scenarios. The work presented here examines how a computer simulation of an agent-based model responds to disruptive events, in the context of an economic model. Agents within the model interact by producing, selling and buying goods. A series of experiments compare system stability in two scenarios: one where a top-down rule is applied to the pricing of goods and another where decision-making is at the individual agent level, a bottom-up approach. These two approaches are termed system-adaptive and self-adaptive. Results draw the conclusion that a self-adaptive function can provide greater stability, but this depends on whether the measured variable is a primary or secondary variable to the adaptive function. Considerations are presented for future work which could consider the impact adaptive functions have on secondary variable measurements.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"31 1","pages":"21 - 34"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123221095644","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Agent-based models, with a history reaching back to the 1940s, have been cited as a useful technique for planning economic development and simulating the effect of economic crashes. These models offer an insightful alternative to the traditional techniques of mathematical modelling. Understanding how different designs of agent-based models change simulation outcomes will be useful for modellers of economic and other simulation scenarios. The work presented here examines how a computer simulation of an agent-based model responds to disruptive events, in the context of an economic model. Agents within the model interact by producing, selling and buying goods. A series of experiments compare system stability in two scenarios: one where a top-down rule is applied to the pricing of goods and another where decision-making is at the individual agent level, a bottom-up approach. These two approaches are termed system-adaptive and self-adaptive. Results draw the conclusion that a self-adaptive function can provide greater stability, but this depends on whether the measured variable is a primary or secondary variable to the adaptive function. Considerations are presented for future work which could consider the impact adaptive functions have on secondary variable measurements.
期刊介绍:
_Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling.
Print ISSN: 1059-7123