M. Müller, A. Bablich, R. Bornemann, Nils Marrenbach, Paul Kienitz, P. Haring Bolívar
{"title":"Intrinsic photomixing detector based on amorphous silicon for envelope mixing of optical signals","authors":"M. Müller, A. Bablich, R. Bornemann, Nils Marrenbach, Paul Kienitz, P. Haring Bolívar","doi":"10.1063/5.0149024","DOIUrl":null,"url":null,"abstract":"In this work, a promising device for direct optical envelope mixing, the Intrinsic Photomixing Detector (IPD) based on hydrogenated amorphous silicon, is reported. The IPD directly generates a photocurrent proportional to the nonlinear mixing of two optical modulation envelope functions. Experiments illustrate efficient mixing in the visible range at low light levels down to ϕ1 = 4.36 mW/cm2 (444 nm) and ϕ2 = 1.03 mW/cm2 (636 nm). Modulation frequencies exceeding the MHz range are demonstrated. Electro-optical simulations identify defect-induced electrical field screening within the absorber to cause the nonlinear mixing process, opening-up the opportunity to tailor devices toward application-specific requirements. The IPD functionality paves the way toward very simple but high-performance photodetectors for 3D imaging and ranging for direct optical convolutional sensors or for efficient optical logic gates. Using amorphous silicon provides a photodetector material base, which can easily be integrated on top of silicon electronics, enabling fill factors of up to 100%.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0149024","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, a promising device for direct optical envelope mixing, the Intrinsic Photomixing Detector (IPD) based on hydrogenated amorphous silicon, is reported. The IPD directly generates a photocurrent proportional to the nonlinear mixing of two optical modulation envelope functions. Experiments illustrate efficient mixing in the visible range at low light levels down to ϕ1 = 4.36 mW/cm2 (444 nm) and ϕ2 = 1.03 mW/cm2 (636 nm). Modulation frequencies exceeding the MHz range are demonstrated. Electro-optical simulations identify defect-induced electrical field screening within the absorber to cause the nonlinear mixing process, opening-up the opportunity to tailor devices toward application-specific requirements. The IPD functionality paves the way toward very simple but high-performance photodetectors for 3D imaging and ranging for direct optical convolutional sensors or for efficient optical logic gates. Using amorphous silicon provides a photodetector material base, which can easily be integrated on top of silicon electronics, enabling fill factors of up to 100%.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.