Yulduz Khodjaeva, Nur Zincir-Heywood, Ibrahim Zincir
{"title":"Can We Detect Malicious Behaviours in Encrypted DNS Tunnels Using Network Flow Entropy?","authors":"Yulduz Khodjaeva, Nur Zincir-Heywood, Ibrahim Zincir","doi":"10.13052/jcsm2245-1439.1135","DOIUrl":null,"url":null,"abstract":"This paper explores the concept of entropy of a flow to augment flow statistical features for encrypted DNS tunnelling detection, specifically DNS over HTTPS traffic. To achieve this, the use of flow exporters, namely Argus, DoHlyzer and Tranalyzer2 are studied. Statistical flow features automatically generated by the aforementioned tools are then augmented with the flow entropy. In this work, flow entropy is calculated using three different techniques: (i) entropy over all packets of a flow, (ii) entropy over the first 96 bytes of a flow, and (iii) entropy over the first n-packets of a flow. These features are provided as input to ML classifiers to detect malicious behaviours over four publicly available datasets. This model is optimized using TPOT-AutoML system, where the Random Forest classifier provided the best performance achieving an average F-measure of 98% over all testing datasets employed.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the concept of entropy of a flow to augment flow statistical features for encrypted DNS tunnelling detection, specifically DNS over HTTPS traffic. To achieve this, the use of flow exporters, namely Argus, DoHlyzer and Tranalyzer2 are studied. Statistical flow features automatically generated by the aforementioned tools are then augmented with the flow entropy. In this work, flow entropy is calculated using three different techniques: (i) entropy over all packets of a flow, (ii) entropy over the first 96 bytes of a flow, and (iii) entropy over the first n-packets of a flow. These features are provided as input to ML classifiers to detect malicious behaviours over four publicly available datasets. This model is optimized using TPOT-AutoML system, where the Random Forest classifier provided the best performance achieving an average F-measure of 98% over all testing datasets employed.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.