A Qualitative Analysis of the Diameter of Long Positive Jet Streamer above Thundercloud in Uniform Atmosphere

Avnish Kumar, P. P. Pathak
{"title":"A Qualitative Analysis of the Diameter of Long Positive Jet Streamer above Thundercloud in Uniform Atmosphere","authors":"Avnish Kumar, P. P. Pathak","doi":"10.4236/jemaa.2021.139009","DOIUrl":null,"url":null,"abstract":"A qualitative analysis of the diameter of the spherical head of a long positive Jet streamer above thundercloud is presented in this paper under uniform atmospheric condition for streamers of less than 7 km length. In this study, an attempt is made to replicate laboratory-based point electrode discharge model for jet streamers originating above the thunderclouds. In laboratory conditions, it is not possible to produce huge electrode potentials which could be the reason that the streamers generated under the controlled lab environment have diameter of the order of only a few centimeter and length of a few millimeter. On the other hand, the thunderclouds carry huge electrical charges, for example 50 C, which can produce huge electrical potentials of the order of several hundred MeV. Such huge potential can act as the potential of a point electrode which may be capable of producing very large and thicker streamers above the thunderclouds. So, a leader mechanism of streamer initiation is assumed in calculations as the tip of conducting leader channel can act as point electrode carrying huge cloud potential to generate large streamers. It is found in this study that as the streamer moves larger distance away from the electrode (leader tip), the diameter of the streamer head decreases. Higher the potential of the electrode (leader tip), thicker is the streamer and more slowly the diameter decreases. Also, it is also found in our calculations that for higher electrode (leader tip) potential lower is the altitude of initiation of streamers.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jemaa.2021.139009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A qualitative analysis of the diameter of the spherical head of a long positive Jet streamer above thundercloud is presented in this paper under uniform atmospheric condition for streamers of less than 7 km length. In this study, an attempt is made to replicate laboratory-based point electrode discharge model for jet streamers originating above the thunderclouds. In laboratory conditions, it is not possible to produce huge electrode potentials which could be the reason that the streamers generated under the controlled lab environment have diameter of the order of only a few centimeter and length of a few millimeter. On the other hand, the thunderclouds carry huge electrical charges, for example 50 C, which can produce huge electrical potentials of the order of several hundred MeV. Such huge potential can act as the potential of a point electrode which may be capable of producing very large and thicker streamers above the thunderclouds. So, a leader mechanism of streamer initiation is assumed in calculations as the tip of conducting leader channel can act as point electrode carrying huge cloud potential to generate large streamers. It is found in this study that as the streamer moves larger distance away from the electrode (leader tip), the diameter of the streamer head decreases. Higher the potential of the electrode (leader tip), thicker is the streamer and more slowly the diameter decreases. Also, it is also found in our calculations that for higher electrode (leader tip) potential lower is the altitude of initiation of streamers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均匀大气中雷暴云上方长正喷流直径的定性分析
本文定性地分析了雷云上空长度小于7 km的长正射流流线在均匀大气条件下的球头直径。在这项研究中,试图复制基于实验室的点电极放电模型,用于雷雨云上方的射流流线。在实验室条件下,不可能产生巨大的电极电位,这可能是在受控的实验室环境下产生的流光的直径只有几厘米,长度只有几毫米的原因。另一方面,雷雨云携带着巨大的电荷,例如50摄氏度,这可以产生几百兆电子伏的巨大电势。如此巨大的电势可以作为点电极的电势,它可能能够在雷雨云上方产生非常大而厚的流光。因此,在计算中假设了一种导流起始的先导机制,即导流通道的尖端可以作为携带巨大云势的点电极产生较大的导流。本研究发现,随着流线离电极(导联尖端)的距离增大,流线头的直径减小。电极电位越高,流线越厚,直径减小越慢。此外,在我们的计算中也发现,对于较高的电极(引线尖端)电位,较低的流线起始高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
441
期刊最新文献
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency Radio Frequency Quadrupole for Bunching Electron Beam: Electromagnetic Field, Particle Velocity Range, and Accuracy at 10 GHz Generation of Higher Terahertz Harmonics in Nonlinear Paraelectrics under Focusing in a Wide Temperature Range Proper Understanding of the Natures of Electrons, Protons, and Modifying Redundancies in Electro-Magnetism Hints of the Photonic Nature of the Electromagnetic Fields in Classical Electrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1