Effect of the net radiation proxies on maize and soya evapotranspiration estimation using machine learning methods.

Q4 Agricultural and Biological Sciences AgriScientia Pub Date : 2022-12-30 DOI:10.31047/1668.298x.v39.n2.37104
V. Venturini, Elisabet Walker, Diana Carolina Fonnegra Mora, Gianfranco Fagioli
{"title":"Effect of the net radiation proxies on maize and soya evapotranspiration estimation using machine learning methods.","authors":"V. Venturini, Elisabet Walker, Diana Carolina Fonnegra Mora, Gianfranco Fagioli","doi":"10.31047/1668.298x.v39.n2.37104","DOIUrl":null,"url":null,"abstract":"Accurate evapotranspiration (ET) estimation is essential for water management in crops, but it is not an easy task. Empirical ET methodologies require precise net radiation (Rn) measurements to obtain accurate results. Nevertheless, Rn measurements are not easy to obtain from meteorological stations. Thus, this study explored the use of machine learning algorithms with two Rn substitutes, to estimate daily ET: the extraterrestrial solar radiation (Ra) and a modelled Rn (RnM). Support Vector Machine (SVM), Kernel Ridge (KR), Decision Tree (DT), Adaptive Boosting (AB), and Multilayer Perceptron (MLP) were applied to model FLUXNET Rn and ET observations. Adaptive Boosting produced the best field Rn measurements (RnO), yielding a Root Mean Square Error of about 16 % of the mean observed Rn. The resulting Rn (AB RnM) was used to model daily crops ET employing the above-mentioned machine learning methods with RnO, AB RnM, and Ra, in conjunction with meteorological variables and the NDVI index. The evaluated methods were suitable to estimate ET, yielding similar errors to those obtained with RnO, when contrasted with ET observations. These results demonstrate that AB and KR are applicable with rutinary meteorological and satellite data to estimate ET.","PeriodicalId":39278,"journal":{"name":"AgriScientia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriScientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31047/1668.298x.v39.n2.37104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate evapotranspiration (ET) estimation is essential for water management in crops, but it is not an easy task. Empirical ET methodologies require precise net radiation (Rn) measurements to obtain accurate results. Nevertheless, Rn measurements are not easy to obtain from meteorological stations. Thus, this study explored the use of machine learning algorithms with two Rn substitutes, to estimate daily ET: the extraterrestrial solar radiation (Ra) and a modelled Rn (RnM). Support Vector Machine (SVM), Kernel Ridge (KR), Decision Tree (DT), Adaptive Boosting (AB), and Multilayer Perceptron (MLP) were applied to model FLUXNET Rn and ET observations. Adaptive Boosting produced the best field Rn measurements (RnO), yielding a Root Mean Square Error of about 16 % of the mean observed Rn. The resulting Rn (AB RnM) was used to model daily crops ET employing the above-mentioned machine learning methods with RnO, AB RnM, and Ra, in conjunction with meteorological variables and the NDVI index. The evaluated methods were suitable to estimate ET, yielding similar errors to those obtained with RnO, when contrasted with ET observations. These results demonstrate that AB and KR are applicable with rutinary meteorological and satellite data to estimate ET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法估算净辐射指标对玉米和大豆蒸散量的影响。
准确的蒸散发估算对作物的水分管理至关重要,但这不是一项容易的任务。经验性蒸散发方法需要精确的净辐射(Rn)测量才能获得准确的结果。然而,从气象站不易获得氮的测量值。因此,本研究探索了使用两种Rn替代品的机器学习算法来估计每日ET:地外太阳辐射(Ra)和模拟的Rn (RnM)。采用支持向量机(SVM)、核脊(KR)、决策树(DT)、自适应增强(AB)和多层感知器(MLP)对FLUXNET Rn和ET观测数据进行建模。自适应增强产生了最佳的现场Rn测量(RnO),产生的均方根误差约为平均观察到的Rn的16%。利用上述机器学习方法,结合RnO、AB RnM和Ra,并结合气象变量和NDVI指数,将得到的Rn (AB RnM)用于模拟作物日ET。所评估的方法适用于估算ET,当与ET观测值进行比较时,其误差与使用RnO获得的结果相似。结果表明,AB和KR可用于常规气象资料和卫星资料估算ET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AgriScientia
AgriScientia Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊介绍: AgriScientia es una revista de acceso abierto, de carácter científico-académico, gestionada por el Área de Difusión Científica de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Argentina. La revista recibe artículos en los idiomas español e inglés. El objetivo de esta publicación es la difusión de los resultados de investigaciones de carácter agronómico. Está destinada a investigadores, estudiantes de pregrado, grado y posgrado, profesionales en el área de las ciencias agropecuarias y público en general interesado en las temáticas relacionadas. Su periodicidad es semestral. Los artículos se reciben durante todo el año. Los tipos de documentos que se publican son artículos científicos, comunicaciones y revisiones.
期刊最新文献
Assessment of land use change in the dryland agricultural region of Córdoba, Argentina, between 2000 and 2020 based on NDVI data Impacto ambiental de las aplicaciones de fitosanitarios en producciones ornamentales intensivas en el partido de Moreno, provincia de Buenos Aires Selección de cepas bacterianas con capacidad antifúngica contra fitopatógenos de alfalfa para constituir un consorcio bacteriano Evaluating Nitrogen Release Rates of Commercial Slow-Release Urea Products Using Brix Value Analysis: A Validation Study Comparing Two Methods Aportes a la morfología de semillas de Hibiscus cannabinus L. y ajuste de la prueba de tetrazolio para estimar viabilidad y vigor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1