S. Johanning, F. Scheller, Daniel Abitz, Claudius Wehner, T. Bruckner
{"title":"A modular multi-agent framework for innovation diffusion in changing business environments: conceptualization, formalization and implementation","authors":"S. Johanning, F. Scheller, Daniel Abitz, Claudius Wehner, T. Bruckner","doi":"10.21203/rs.3.rs-47351/v1","DOIUrl":null,"url":null,"abstract":"Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.","PeriodicalId":55853,"journal":{"name":"Complex Adaptive Systems Modeling","volume":"8 1","pages":"1-32"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Systems Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-47351/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9
Abstract
Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.