Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 2

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2021-06-01 DOI:10.29391/2021.100.016
Yu-ping Yang
{"title":"Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 2","authors":"Yu-ping Yang","doi":"10.29391/2021.100.016","DOIUrl":null,"url":null,"abstract":"Weld residual stress can contribute to the reduction of structure lifetime and accelerate the formation of fatigue cracks, brittle fractures, or stress corrosion cracking. Distortion can have a significant impact on the dimensional ac-curacy of assembly, structure strength, and fabrication cost. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in mitigation techniques that have been applied in the structure design, manufacturing, and postweld stages. The techniques used in the structure design stage include selecting the type of weld joint and weld groove, using balanced welding, determining appropriate plate thickness and stiffener spacing, and considering distortion compensation. Mitigation techniques used in the manufacturing stage include welding sequence optimization, reducing welding heating input, selecting low-transformation-temperature filler metals, prebending, precambering, constraints, trailing and stationary cooling, in-processing rolling, transient thermal tensioning, and additional heat sources. Postweld mitigation techniques include postweld heating and mechanical treatment. Finally, the remaining challenges and new development needs were discussed to guide future development in the field of mitigating weld residual stress and distortion.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 9

Abstract

Weld residual stress can contribute to the reduction of structure lifetime and accelerate the formation of fatigue cracks, brittle fractures, or stress corrosion cracking. Distortion can have a significant impact on the dimensional ac-curacy of assembly, structure strength, and fabrication cost. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in mitigation techniques that have been applied in the structure design, manufacturing, and postweld stages. The techniques used in the structure design stage include selecting the type of weld joint and weld groove, using balanced welding, determining appropriate plate thickness and stiffener spacing, and considering distortion compensation. Mitigation techniques used in the manufacturing stage include welding sequence optimization, reducing welding heating input, selecting low-transformation-temperature filler metals, prebending, precambering, constraints, trailing and stationary cooling, in-processing rolling, transient thermal tensioning, and additional heat sources. Postweld mitigation techniques include postweld heating and mechanical treatment. Finally, the remaining challenges and new development needs were discussed to guide future development in the field of mitigating weld residual stress and distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
焊接残余应力和变形预测的最新进展-第二部分
焊接残余应力会导致结构寿命缩短,并加速疲劳裂纹、脆性断裂或应力腐蚀裂纹的形成。畸变会对装配的尺寸精度、结构强度和制造成本产生重大影响。在过去的二十年里,在预测和减轻焊缝残余应力和变形方面取得了许多重大而令人兴奋的进展。本文综述了在结构设计、制造和焊后阶段应用的缓解技术的最新进展。结构设计阶段使用的技术包括选择焊缝和焊缝坡口的类型,使用平衡焊接,确定适当的板厚度和加劲肋间距,以及考虑变形补偿。制造阶段使用的缓解技术包括焊接顺序优化、减少焊接加热输入、选择低转变温度填充金属、预弯曲、预分解、约束、拖尾和静止冷却、加工中轧制、瞬态热张紧和额外热源。焊后缓解技术包括焊后加热和机械处理。最后,讨论了剩余的挑战和新的发展需求,以指导减轻焊接残余应力和变形领域的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1