Bruce A. Menge, Jonathan W. Robinson, Brittany N. Poirson, Sarah A. Gravem
{"title":"Quantitative biogeography: Decreasing and more variable dynamics of critical species in an iconic meta-ecosystem","authors":"Bruce A. Menge, Jonathan W. Robinson, Brittany N. Poirson, Sarah A. Gravem","doi":"10.1002/ecm.1556","DOIUrl":null,"url":null,"abstract":"<p>Ecosystem stability has intrigued ecologists for decades, and the realization that the global climate was changing has sharpened and focused this interest. One possible early warning signal of decreasing stability is increasing variability in ecosystems over time with increasing climate variability. Determining climate change effects on community stability, however, requires long-term studies of structure and underlying dynamics, including bottom-up and top-down effects in natural ecosystems. Although relevant datasets were rare in the early years of community ecology, such information has increased in recent decades. We investigated spatiotemporal changes in mean and variability of ecological subsidies (nutrients, phytoplankton, prey colonization), performance metrics of a dominant space occupier (mussels) and its primary predator (sea stars), and sea star predation rates on mussels in relation to climatic oscillations, temperature, and disease on rocky shores. The research involved annually repeated multiyear (~1999–2018), multisite (13 sites nested within five regions along ~260 km of the Oregon coast) observations, measurements, and experiments. We analyzed associations between environmental variables and ecological performance of key elements of the sea star-mussel-dominated mid intertidal system. We found that upwelling declined in some regions, but became more variable across all study regions. Air and water temperatures oscillated, but their mean and variation increased through time, with peak values coinciding with the 2014–2016 combined El Niño and Marine Heat Wave. Ecological subsidies generally declined during the study period but increased in variability. Excepting growth rate, mussel (<i>Mytilus californianus</i>) performance (condition index, reproductive output) generally decreased and became more variable. Primarily due to a sea star wasting epidemic, reproductive output of the top predator <i>Pisaster ochraceus</i> decreased and became more variable, and predation rate on mussels decreased. Analyses indicated that the primary drivers of these changes were temperature-related environmental factors. As declining means and increasing variability of ecological performances can typify destabilizing ecosystems, and environmental trends are toward ever more stressful conditions, the outlook for this iconic ecosystem is discouraging. Immediate and rapid action to mitigate and ultimately reverse climate change likely is the only option available to prevent an irreversible shift in the future of this, and most other ecosystems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1556","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Ecosystem stability has intrigued ecologists for decades, and the realization that the global climate was changing has sharpened and focused this interest. One possible early warning signal of decreasing stability is increasing variability in ecosystems over time with increasing climate variability. Determining climate change effects on community stability, however, requires long-term studies of structure and underlying dynamics, including bottom-up and top-down effects in natural ecosystems. Although relevant datasets were rare in the early years of community ecology, such information has increased in recent decades. We investigated spatiotemporal changes in mean and variability of ecological subsidies (nutrients, phytoplankton, prey colonization), performance metrics of a dominant space occupier (mussels) and its primary predator (sea stars), and sea star predation rates on mussels in relation to climatic oscillations, temperature, and disease on rocky shores. The research involved annually repeated multiyear (~1999–2018), multisite (13 sites nested within five regions along ~260 km of the Oregon coast) observations, measurements, and experiments. We analyzed associations between environmental variables and ecological performance of key elements of the sea star-mussel-dominated mid intertidal system. We found that upwelling declined in some regions, but became more variable across all study regions. Air and water temperatures oscillated, but their mean and variation increased through time, with peak values coinciding with the 2014–2016 combined El Niño and Marine Heat Wave. Ecological subsidies generally declined during the study period but increased in variability. Excepting growth rate, mussel (Mytilus californianus) performance (condition index, reproductive output) generally decreased and became more variable. Primarily due to a sea star wasting epidemic, reproductive output of the top predator Pisaster ochraceus decreased and became more variable, and predation rate on mussels decreased. Analyses indicated that the primary drivers of these changes were temperature-related environmental factors. As declining means and increasing variability of ecological performances can typify destabilizing ecosystems, and environmental trends are toward ever more stressful conditions, the outlook for this iconic ecosystem is discouraging. Immediate and rapid action to mitigate and ultimately reverse climate change likely is the only option available to prevent an irreversible shift in the future of this, and most other ecosystems.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.