M. Prioux, E. Da Rosa Silva, Maxime Hubert, J. Vulliet, J. Debayle, P. Cloetens, J. Laurencin
{"title":"Numerical microstructural optimization for the hydrogen electrode of solid oxide cells","authors":"M. Prioux, E. Da Rosa Silva, Maxime Hubert, J. Vulliet, J. Debayle, P. Cloetens, J. Laurencin","doi":"10.1002/fuce.202300029","DOIUrl":null,"url":null,"abstract":"A multiscale model has been used to optimize the microstructure of a classical hydrogen electrode made of nickel and yttria‐stabilized zirconia (Ni‐8YSZ). For this purpose, a 3D reconstruction of a reference electrode has been obtained by X‐ray nano‐holotomography. Then, a large dataset of synthetic microstructures has been generated around this reference with the truncated Gaussian random field method, varying the ratio Ni/8YSZ and the Ni particle size. All the synthetic microstructures have been introduced in a multiscale modeling approach to analyze the impact of the microstructure on the electrode and cell responses. The local electrode polarization resistance in the hydrogen electrode, as well as the complete cell impedance spectra, have been computed for the different microstructures. A significant performance improvement was found when decreasing the Ni particle size distribution. Moreover, an optimum has been identified in terms of electrode composition allowing the minimization of the cell polarization resistance. The same methodology has been also applied to assess the relevance of graded electrodes. All these results allow a better understanding of the precise role of microstructure on cell performances and provide useful guidance for cell manufacturing.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fuce.202300029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
A multiscale model has been used to optimize the microstructure of a classical hydrogen electrode made of nickel and yttria‐stabilized zirconia (Ni‐8YSZ). For this purpose, a 3D reconstruction of a reference electrode has been obtained by X‐ray nano‐holotomography. Then, a large dataset of synthetic microstructures has been generated around this reference with the truncated Gaussian random field method, varying the ratio Ni/8YSZ and the Ni particle size. All the synthetic microstructures have been introduced in a multiscale modeling approach to analyze the impact of the microstructure on the electrode and cell responses. The local electrode polarization resistance in the hydrogen electrode, as well as the complete cell impedance spectra, have been computed for the different microstructures. A significant performance improvement was found when decreasing the Ni particle size distribution. Moreover, an optimum has been identified in terms of electrode composition allowing the minimization of the cell polarization resistance. The same methodology has been also applied to assess the relevance of graded electrodes. All these results allow a better understanding of the precise role of microstructure on cell performances and provide useful guidance for cell manufacturing.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.