Adaptive transit scheduling to reduce rider vulnerability during heatwaves

IF 2.7 Q2 ENGINEERING, CIVIL Sustainable and Resilient Infrastructure Pub Date : 2022-02-23 DOI:10.1080/23789689.2022.2029324
Noam Rosenthal, M. Chester, Andrew M. Fraser, D. Hondula, D. Eisenman
{"title":"Adaptive transit scheduling to reduce rider vulnerability during heatwaves","authors":"Noam Rosenthal, M. Chester, Andrew M. Fraser, D. Hondula, D. Eisenman","doi":"10.1080/23789689.2022.2029324","DOIUrl":null,"url":null,"abstract":"ABSTRACT Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"7 1","pages":"744 - 755"},"PeriodicalIF":2.7000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2029324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应交通调度以减少热浪期间乘客的脆弱性
摘要气候变化引发的极端高温事件对过境乘客的舒适度和健康构成了越来越大的风险。为了减少接触,各机构可能会考虑改变时间表,减少为弱势人群服务的交通繁忙的公交线路的行车时间。本文开发了一个最小化热暴露的时间表优化模型,并将其应用于亚利桑那州凤凰城的当地公交服务,使用基于代理的模拟来告知出行需求和乘客特征。当以最大车队容量运行时,车队只需重新安排10%的路线,就可以将整个网络的风险降低35%。结果改善的显著特点是回报递减,这是由于乘客量的偏差以及车队规模与乘客等待时间之间的反比关系。获得备用车辆也可以确保显著减少暴露,尤其是在最极端的温度下。因此,重新出发提供了一种低成本、适应性强的恢复策略,以保护骑手免受极端高温的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
期刊最新文献
Impact-oriented risk management: guiding practitioners towards a resilient supply chain design Road surface damages allocation with RTI-IMS software based on YOLO V5 model Allocation and sizing of dispatchable distributed generators considering value addition in resiliency and sustainability of power delivery infrastructure Developing a social value model for Oman’s national infrastructure planning: a hermeneutical approach Measuring the economic and societal value of reliability/resilience investments: case studies of islanded communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1