Hydrogen oxidation on oxygen-rich IrO2(110)

Q1 Materials Science Catalysis Structure & Reactivity Pub Date : 2018-10-02 DOI:10.1080/2055074X.2018.1565002
Tao Li, Minkyu Kim, Zhu Liang, A. Asthagiri, J. Weaver
{"title":"Hydrogen oxidation on oxygen-rich IrO2(110)","authors":"Tao Li, Minkyu Kim, Zhu Liang, A. Asthagiri, J. Weaver","doi":"10.1080/2055074X.2018.1565002","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigated the adsorption and oxidation of H2 on O-rich IrO2(110) using temperature programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. Our results show that H2 dissociation occurs efficiently on O-rich IrO2(110) at low temperature and initiates from an adsorbed H2 σ-complex on the coordinatively-unsaturated Ir atoms (Ircus). We find that on-top oxygen atoms (Oot), adsorbed on the Ircus sites, promote the desorption-limited evolution of H2O during subsequent oxidation of the adsorbed hydrogen on IrO2(110) while suppressing reaction-limited production of H2O via the recombination of bridging HO groups (HObr) (~500 to 750 K) during TPRS. The desorption-limited TPRS peak of H2O shifts from ~490 to 550 K with increasing Oot coverage, demonstrating that Oot atoms stabilize adsorbed OH and H2O species. DFT predicts that molecularly-adsorbed H2 dissociates on O-rich IrO2(110) at low temperature and that the resulting H-atoms redistribute to produce a mixture of HObr and HOot groups, with equilibrium favouring HOot groups. Our calculations further predict that subsequent H2O evolution occurs through the recombination of HObr/HOot and HOot/HOot pairs, and that these reactions represent desorption-limited pathways because the dissociative chemisorption of H2O is favoured over molecular adsorption on IrO2(110). The higher stability of HOot groups and their preferred formation causes the higher-barrier HOot/HOot recombination reaction to become the dominant pathway for H2O formation with increasing Oot coverage, consistent with the experimentally-observed upshift in the H2O TPRS peak temperature. Graphical abstract","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2018.1565002","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2018.1565002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

Abstract

ABSTRACT We investigated the adsorption and oxidation of H2 on O-rich IrO2(110) using temperature programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. Our results show that H2 dissociation occurs efficiently on O-rich IrO2(110) at low temperature and initiates from an adsorbed H2 σ-complex on the coordinatively-unsaturated Ir atoms (Ircus). We find that on-top oxygen atoms (Oot), adsorbed on the Ircus sites, promote the desorption-limited evolution of H2O during subsequent oxidation of the adsorbed hydrogen on IrO2(110) while suppressing reaction-limited production of H2O via the recombination of bridging HO groups (HObr) (~500 to 750 K) during TPRS. The desorption-limited TPRS peak of H2O shifts from ~490 to 550 K with increasing Oot coverage, demonstrating that Oot atoms stabilize adsorbed OH and H2O species. DFT predicts that molecularly-adsorbed H2 dissociates on O-rich IrO2(110) at low temperature and that the resulting H-atoms redistribute to produce a mixture of HObr and HOot groups, with equilibrium favouring HOot groups. Our calculations further predict that subsequent H2O evolution occurs through the recombination of HObr/HOot and HOot/HOot pairs, and that these reactions represent desorption-limited pathways because the dissociative chemisorption of H2O is favoured over molecular adsorption on IrO2(110). The higher stability of HOot groups and their preferred formation causes the higher-barrier HOot/HOot recombination reaction to become the dominant pathway for H2O formation with increasing Oot coverage, consistent with the experimentally-observed upshift in the H2O TPRS peak temperature. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富氧IrO2(110)上的氢氧化
摘要我们利用程序升温反应光谱(TPRS)和密度泛函理论(DFT)计算研究了富O IrO2(110)对H2的吸附和氧化。我们的结果表明,H2在低温下在富O的IrO2(110)上有效地发生离解,并由配位不饱和Ir原子(Ircus)上吸附的H2σ-络合物引发。我们发现,吸附在Ircus位点上的顶部氧原子(Oot)在随后吸附的氢在IrO2(110)上的氧化过程中促进了H2O的解吸受限释放,同时在TPRS过程中通过桥接HO基团(HObr)的重组(~500-750K)抑制了H2O的反应受限产生。随着Oot覆盖率的增加,H2O的解吸限制TPRS峰从~490 K移动到550K,表明Oot原子稳定了吸附的OH和H2O物种。DFT预测,分子吸附的H2在低温下在富含O的IrO2(110)上离解,并且所得的H原子重新分布以产生HObr和HOot基团的混合物,平衡有利于HOot基团。我们的计算进一步预测,随后的H2O进化是通过HObr/HOot和HOot/HOot对的重组发生的,并且这些反应代表了解吸受限的途径,因为H2O的离解化学吸附比IrO2上的分子吸附更有利(110)。HOot基团及其优选形成的更高稳定性导致随着Oot覆盖率的增加,更高的势垒HOot/HOot复合反应成为H2O形成的主要途径,这与实验观察到的H2O TPRS峰值温度的升高一致。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Plasmonic photocatalysis Electrocatalysts Catalysis Catalysis Direct non-oxidative methane conversion in membrane reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1