A. Gardner, A. Weiss, J. Heineck, A. Overmeyer, H. Spooner, Dr. R. K. Jain, C. Wolf, M. Raffel
{"title":"Boundary Layer Transition Measured by DIT on the PSP Rotor in Forward Flight","authors":"A. Gardner, A. Weiss, J. Heineck, A. Overmeyer, H. Spooner, Dr. R. K. Jain, C. Wolf, M. Raffel","doi":"10.4050/JAHS.66.022008","DOIUrl":null,"url":null,"abstract":"\n A well-defined reference set of data for computational fluid dynamics and comprehensive code validation for a scaled helicopter main rotor with boundary layer transition in forward flight is presented. The boundary layer transition was measured using differential infrared thermography (DIT) on the top (suction) side of the NASA/Army “PSP rotor” in the NASA Langley 14-by-22-Foot Subsonic Tunnel. The tests used a FLIR X8500 SLS long-wave infrared camera to observe the three-bladed rotor. The boundary layer transition was detected for forward flight at an advance ratio of 0.3 (115 kt). The measured boundary layer transition positions are consistent with previous measurements and predicted boundary layer transition locations. A method for the analysis of DIT images for a rotor in forward flight is shown and validated based on computational analysis of a pitching airfoil with varying inflow, showing both qualitative and quantitative similarity to experimental data.\n","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/JAHS.66.022008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2
Abstract
A well-defined reference set of data for computational fluid dynamics and comprehensive code validation for a scaled helicopter main rotor with boundary layer transition in forward flight is presented. The boundary layer transition was measured using differential infrared thermography (DIT) on the top (suction) side of the NASA/Army “PSP rotor” in the NASA Langley 14-by-22-Foot Subsonic Tunnel. The tests used a FLIR X8500 SLS long-wave infrared camera to observe the three-bladed rotor. The boundary layer transition was detected for forward flight at an advance ratio of 0.3 (115 kt). The measured boundary layer transition positions are consistent with previous measurements and predicted boundary layer transition locations. A method for the analysis of DIT images for a rotor in forward flight is shown and validated based on computational analysis of a pitching airfoil with varying inflow, showing both qualitative and quantitative similarity to experimental data.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine