A Survey on Differential Privacy for Medical Data Analysis

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-06-10 DOI:10.1007/s40745-023-00475-3
WeiKang Liu, Yanchun Zhang, Hong Yang, Qinxue Meng
{"title":"A Survey on Differential Privacy for Medical Data Analysis","authors":"WeiKang Liu,&nbsp;Yanchun Zhang,&nbsp;Hong Yang,&nbsp;Qinxue Meng","doi":"10.1007/s40745-023-00475-3","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00475-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗数据分析中的差异隐私调查
机器学习方法促进了智慧医疗信息技术(WITMED)的可持续发展,各种医疗数据为医疗分析带来了高价值和便利。然而,医疗数据的应用也面临着难以避免的隐私泄露风险,尤其是在进行关联分析或多机构数据共享时。最近,数据安全和隐私保护在安全和隐私医疗数据分析领域发挥了至关重要的作用,许多差异化隐私策略被应用于医疗数据发布和挖掘。在本文中,我们调查了医学数据分析中差异化隐私应用的研究工作,讨论了医学隐私保护的必要性、差异化隐私的优势以及它们在基因组数据和可穿戴设备数据等典型医学数据中的应用。此外,我们还讨论了差异化隐私在医疗应用中面临的挑战和潜在的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1