The Hubbard Model: A Computational Perspective

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2021-03-31 DOI:10.1146/annurev-conmatphys-090921-033948
M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull
{"title":"The Hubbard Model: A Computational Perspective","authors":"M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull","doi":"10.1146/annurev-conmatphys-090921-033948","DOIUrl":null,"url":null,"abstract":"The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. Although analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impressive progress in achieving quantitative accurate results over the past several years. This article gives an introduction to the model, motivates common questions, and illustrates the progress that has been achieved over recent years in revealing various aspects of the correlation physics of the model. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-090921-033948","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 140

Abstract

The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. Although analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impressive progress in achieving quantitative accurate results over the past several years. This article gives an introduction to the model, motivates common questions, and illustrates the progress that has been achieved over recent years in revealing various aspects of the correlation physics of the model. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hubbard模型:一个计算视角
哈伯德模型是晶格上费米子相互作用的最简单模型,它对相关电子物理学的重要性与伊辛模型对统计力学或果蝇对生物医学科学的重要性相似。尽管它很简单,但该模型展示了令人难以置信的丰富的相、相变和奇异的相关现象。虽然分析方法在一定限度内提供了模型的定性描述,但在过去几年中,数值工具在获得定量准确结果方面取得了令人印象深刻的进展。本文介绍了该模型,提出了常见的问题,并说明了近年来在揭示该模型的相关物理的各个方面所取得的进展。预计《凝聚态物理年鉴》第13卷的最终在线出版日期为2022年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Spin-Polarized Antiferromagnetic Metals Quantum Liquids: Emergent Higher-Rank Gauge Theory and Fractons Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects Human Rights and Science: Biographical Notes Hydrodynamic Electronic Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1