Practical aspects of Bayesian multivariate meta-analysis

IF 0.1 Q4 INSTRUMENTS & INSTRUMENTATION Ukrainian Metrological Journal Pub Date : 2022-12-29 DOI:10.24027/2306-7039.4.2022.276300
Olha Bodnar, Taras Bodnar
{"title":"Practical aspects of Bayesian multivariate meta-analysis","authors":"Olha Bodnar, Taras Bodnar","doi":"10.24027/2306-7039.4.2022.276300","DOIUrl":null,"url":null,"abstract":"Multivariate meta-analysis is a mostly used approach when multivariate results of several studies are pooled together. The multivariate model of random effects provides a tool to perform the multivariate meta-analysis in practice. In this paper, we discuss Bayesian inference procedures derived for the multivariate model of random effects when the model parameters are endowed with two non-informative priors: the Berger-Bernardo reference prior and the Jeffreys prior. Moreover, two Metropolis-Hastings algorithms are presented, and their convergence properties are analysed via simulations.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.4.2022.276300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate meta-analysis is a mostly used approach when multivariate results of several studies are pooled together. The multivariate model of random effects provides a tool to perform the multivariate meta-analysis in practice. In this paper, we discuss Bayesian inference procedures derived for the multivariate model of random effects when the model parameters are endowed with two non-informative priors: the Berger-Bernardo reference prior and the Jeffreys prior. Moreover, two Metropolis-Hastings algorithms are presented, and their convergence properties are analysed via simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯多元荟萃分析的实践方面
多变量荟萃分析是将多个研究的多变量结果汇总在一起时最常用的方法。随机效应的多元模型为实践中进行多元元分析提供了工具。本文讨论了随机效应多变量模型参数具有两种非信息先验(Berger-Bernardo参考先验和Jeffreys先验)时的贝叶斯推理过程。提出了两种Metropolis-Hastings算法,并通过仿真分析了它们的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ukrainian Metrological Journal
Ukrainian Metrological Journal INSTRUMENTS & INSTRUMENTATION-
自引率
0.00%
发文量
21
期刊最新文献
A statistical method for the assessment of metrological characteristics of reference materials Study of metrological characteristics of the state primary measurement standard of volume flow and mass consumption of liquid in preparation for participation in international comparisons The estimation of the long-term drift of the inductance measurement standards Study of reading errors when calibrating analog ohmmeters Modern approaches to studying the accuracy of determination of deformation values in geodesic monitoring of crane equipment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1