{"title":"Highly Directive Array Pattern Synthesis in Different phi Planes of a Large CCRAA Using Array Thinning Technique","authors":"S. Dubey, D. Mandal, A. K. Mishra","doi":"10.7716/aem.v11i2.1828","DOIUrl":null,"url":null,"abstract":"This paper presents a pattern synthesis method of a sizeable concentric circular ring array (CCRAA) of isotropic antennas using Evolutionary Algorithms. In this method, the array is thinned using the optimum set of binary excitations to achieve the desired highly directive pencil beam patterns with lower peak side lobe level(SLL). The half-power beam width and first null beam width is kept constant to obtain such highly directive beam patterns with lower peak SLL. This pattern is not synthesized to a particular azimuth plane rather in four different ' planes from entire azimuth planes. The isotropic elements are uniformly spaced in the concentric ring. The achieved set of optimum amplitudes are constructed with either 1 or 0 using Differential Evolutionary Algorithm(DE), Genetic Algorithm (GA), and Particle Swarm Optimization Algorithm (PSO). These excitations show the state of the elements. The elements are in “ON” state or in “OFF” state depending upon the excitation ‘1’ or ‘0’. It is also helpful to reduce the complexity of the feed networks. The excitations are also verified in the whole range (0o <phi<360o) of ' planes by selecting four phi planes arbitrarily. The outcomes established the superiority of GA and DE over PSO and also the effectiveness of the proposed method.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i2.1828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a pattern synthesis method of a sizeable concentric circular ring array (CCRAA) of isotropic antennas using Evolutionary Algorithms. In this method, the array is thinned using the optimum set of binary excitations to achieve the desired highly directive pencil beam patterns with lower peak side lobe level(SLL). The half-power beam width and first null beam width is kept constant to obtain such highly directive beam patterns with lower peak SLL. This pattern is not synthesized to a particular azimuth plane rather in four different ' planes from entire azimuth planes. The isotropic elements are uniformly spaced in the concentric ring. The achieved set of optimum amplitudes are constructed with either 1 or 0 using Differential Evolutionary Algorithm(DE), Genetic Algorithm (GA), and Particle Swarm Optimization Algorithm (PSO). These excitations show the state of the elements. The elements are in “ON” state or in “OFF” state depending upon the excitation ‘1’ or ‘0’. It is also helpful to reduce the complexity of the feed networks. The excitations are also verified in the whole range (0o
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.