D. Tulyaganov, A. Akbarov, N. Ziyadullaeva, Bekhzod Khabilov, F. Baino
{"title":"Injectable bioactive glass-based pastes for potential use in bone tissue repair","authors":"D. Tulyaganov, A. Akbarov, N. Ziyadullaeva, Bekhzod Khabilov, F. Baino","doi":"10.1515/bglass-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"6 1","pages":"23 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2020-0003","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.