R. Lavado, Sanjana Senthilkumar, Megan E. Solan, M. T. Fernández-Luna
{"title":"Cannabidiol and indole-3-carbinol reduce intracellular lipid droplet accumulation in HepaRG, a human liver cell line, as well as in human adipocytes","authors":"R. Lavado, Sanjana Senthilkumar, Megan E. Solan, M. T. Fernández-Luna","doi":"10.2174/2210315513666230526100544","DOIUrl":null,"url":null,"abstract":"\n\nAn increase in obesity-related diseases is becoming an alarming worldwide problem. Therefore, new therapeutic methods are constantly sought to prevent, treat, and alleviate symptoms of the diseases associated with obesity.\n\n\n\nThis study investigates the effects of two natural compounds (indole-3-carbinol, I3C, a bioactive indolic compound found in cruciferous vegetables; cannabidiol, CBD, the active ingredient derived from the hemp plant) on the fatty acid accumulation in the human liver cell line HepaRG, a well-established model for non-alcoholic fatty liver disease (NAFLD) and in human pre-adipocytes (adipose-derived mesenchymal stem cells, MSC).\n\n\n\nEC50s of each compound were in the high µM range (approximately 30 mg/L), showing the low toxicity of these compounds. Determination of the selected compounds in cell media showed no significant differences during the exposure, suggesting that no significant metabolism or degradation happened during the exposure time. Quantification of the bioaccumulation of lipid droplets on exposed HepaRG revealed a significant reduction and mitigation of fatty acid accumulation when exposed to 1 nM of I3C and 100 nM of CBD.). On MSC cells a significant inhibition of lipogenesis and adipocyte differentiation was observed in cells exposed to 0.1 nM of I3C and 1 nM of CBD.\n\n\n\nThis study provides a significant contribution to advancing the understanding of preventative dietary strategies that target adipocyte differentiation and NAFLD.\n","PeriodicalId":56153,"journal":{"name":"Natural Products Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210315513666230526100544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
An increase in obesity-related diseases is becoming an alarming worldwide problem. Therefore, new therapeutic methods are constantly sought to prevent, treat, and alleviate symptoms of the diseases associated with obesity.
This study investigates the effects of two natural compounds (indole-3-carbinol, I3C, a bioactive indolic compound found in cruciferous vegetables; cannabidiol, CBD, the active ingredient derived from the hemp plant) on the fatty acid accumulation in the human liver cell line HepaRG, a well-established model for non-alcoholic fatty liver disease (NAFLD) and in human pre-adipocytes (adipose-derived mesenchymal stem cells, MSC).
EC50s of each compound were in the high µM range (approximately 30 mg/L), showing the low toxicity of these compounds. Determination of the selected compounds in cell media showed no significant differences during the exposure, suggesting that no significant metabolism or degradation happened during the exposure time. Quantification of the bioaccumulation of lipid droplets on exposed HepaRG revealed a significant reduction and mitigation of fatty acid accumulation when exposed to 1 nM of I3C and 100 nM of CBD.). On MSC cells a significant inhibition of lipogenesis and adipocyte differentiation was observed in cells exposed to 0.1 nM of I3C and 1 nM of CBD.
This study provides a significant contribution to advancing the understanding of preventative dietary strategies that target adipocyte differentiation and NAFLD.
期刊介绍:
The Natural Products Journal a peer reviewed journal, aims to publish all the latest and outstanding developments in natural products. The Natural Products Journal publishes original research articles, full-length/mini reviews, letters and guest edited issues on all aspects of research and development in the field including: isolation, purification, structure elucidation, synthesis and bioactivity of chemical compounds found in nature.