New Surface-Plasmon-Polariton-Like Acoustic Surface Waves at the Interface Between Two Semi-Infinite Media

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS Archives of Acoustics Pub Date : 2023-07-20 DOI:10.24425/aoa.2022.142010
Piotr Kiełczyński
{"title":"New Surface-Plasmon-Polariton-Like Acoustic Surface Waves at the Interface Between Two Semi-Infinite Media","authors":"Piotr Kiełczyński","doi":"10.24425/aoa.2022.142010","DOIUrl":null,"url":null,"abstract":"This paper presents theory of new shear horizontal (SH) acoustic surface waves that propagate along the interface of two semi-infinite elastic half-spaces, one of which is a conventional elastic medium and a second one an elastic metamaterial with a negative and frequency dependent shear elastic compliance. This new surface waves have only one transverse component of mechanical displacement, which has a maximum at the interface and decays exponentially with distance from the interface. Similar features are also shown by the acoustic shear horizontal Maerfeld-Tournois surface waves propagating at the interface of two semi-infinite elastic media due to the piezoelectric effect that should occur in at least one semi-space. The proposed new shear horizontal acoustic surface waves exhibit also strong formal similarities with the electromagnetic surface waves of the surface plasmon polariton (SPP) type, propagating along a metal-dielectric planar interface. In fact, the new shear horizontal elastic surface waves possess a large number of properties that are inherent for the SPP electromagnetic surface waves, such as strong subwavelength concentration of the wave field in the proximity of the guiding interface, low phase and group velocity etc. As a result, the new shear horizontal acoustic surface waves can find applications in sensors with extremely high sensitivity, employed in measurements of various physical parameters, such as viscosity of liquids, as well as in biosensors, chemosensors, or a near field acoustic microscopy (subwavelength imaging) and miniaturized devices of microwave acoustics.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents theory of new shear horizontal (SH) acoustic surface waves that propagate along the interface of two semi-infinite elastic half-spaces, one of which is a conventional elastic medium and a second one an elastic metamaterial with a negative and frequency dependent shear elastic compliance. This new surface waves have only one transverse component of mechanical displacement, which has a maximum at the interface and decays exponentially with distance from the interface. Similar features are also shown by the acoustic shear horizontal Maerfeld-Tournois surface waves propagating at the interface of two semi-infinite elastic media due to the piezoelectric effect that should occur in at least one semi-space. The proposed new shear horizontal acoustic surface waves exhibit also strong formal similarities with the electromagnetic surface waves of the surface plasmon polariton (SPP) type, propagating along a metal-dielectric planar interface. In fact, the new shear horizontal elastic surface waves possess a large number of properties that are inherent for the SPP electromagnetic surface waves, such as strong subwavelength concentration of the wave field in the proximity of the guiding interface, low phase and group velocity etc. As a result, the new shear horizontal acoustic surface waves can find applications in sensors with extremely high sensitivity, employed in measurements of various physical parameters, such as viscosity of liquids, as well as in biosensors, chemosensors, or a near field acoustic microscopy (subwavelength imaging) and miniaturized devices of microwave acoustics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种半无限介质界面上的新型表面等离子体类极化声表面波
本文提出了新的剪切水平(SH)声表面波的理论,该声表面波沿着两个半无限弹性半空间的界面传播,其中一个是传统弹性介质,另一个是具有负和频率相关剪切弹性柔量的弹性超材料。这种新的表面波只有一个机械位移的横向分量,该分量在界面处具有最大值,并且随着离界面的距离呈指数衰减。由于至少在一个半空间中发生的压电效应,在两个半无限弹性介质的界面上传播的声剪切水平Maerfeld Tournois表面波也显示出类似的特征。所提出的新的剪切水平声表面波与沿金属-电介质平面界面传播的表面等离子体激元(SPP)类型的电磁表面波也表现出强烈的形式相似性。事实上,新的剪切水平弹性表面波具有SPP电磁表面波固有的大量特性,如引导界面附近波场的强亚波长集中、低相位和群速度等。因此,新的剪切水平声表面波可以应用于具有极高灵敏度的传感器,用于测量各种物理参数,如液体粘度,以及生物传感器、化学传感器或近场声学显微镜(亚波长成像)和微型微波声学设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
期刊最新文献
148765 148764 Laboratory Tests and Numerical Simulations of Two Anti-Vibration Structures Made by 3D Printing – Comparative Research Evaluation of the Sedimentation Process in the Thickener by Using the Parameters of Longitudinal Ultrasonic Oscillations and Lamb Waves Janusz Wójcik Professor of the IPPT PAN (In Memoriam)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1