H. Bakhti, I. Gasser, Stefan Dipl.-Ing. Schuster, E. Parfenov
{"title":"Modelling, simulation and optimisation of parabolic trough power plants","authors":"H. Bakhti, I. Gasser, Stefan Dipl.-Ing. Schuster, E. Parfenov","doi":"10.1017/S0956792522000274","DOIUrl":null,"url":null,"abstract":"We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0956792522000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.