{"title":"Influence of Ag particle shape on mechanical and thermal properties of TIM joints","authors":"M. Myśliwiec, R. Kisiel, M. Kruszewski","doi":"10.1108/mi-06-2022-0108","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.\n\n\nDesign/methodology/approach\nMechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.\n\n\nFindings\nIt was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.\n\n\nOriginality/value\nThe new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-06-2022-0108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.
Design/methodology/approach
Mechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.
Findings
It was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.
Originality/value
The new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.