Mechanism elucidation for wood sandwich compression from the perspective of yield stress

IF 2.2 3区 农林科学 Q2 FORESTRY Holzforschung Pub Date : 2023-06-16 DOI:10.1515/hf-2023-0002
Rongfeng Huang, S. Feng, Zhiqiang Gao, H. Liu
{"title":"Mechanism elucidation for wood sandwich compression from the perspective of yield stress","authors":"Rongfeng Huang, S. Feng, Zhiqiang Gao, H. Liu","doi":"10.1515/hf-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract To elucidate the mechanism of wood sandwich compression, the response of wood compressing yield stress to hygrothermal conditions was investigated in this study with respect to preheating temperature (30–210 °C) and moisture content (MC, 0–100 %). An associated functional model was developed to predict wood yield stress based on the measured MC and temperature in wood. A 1 % increase in wood MC or a 10 °C increase of temperature led to a decrease in wood yield stress exceeding 0.1 MPa. Significant variations in yield stress, exceeding 0.8 MPa, were observed between high MC layer(s) and the remaining layer(s) along the wood thickness when there was an MC variation over 5 %. Preheating the wood with by heating platens accelerated water/moisture migration in wood, resulting in relatively low yield stress in the wood interior areas where water/moisture had migrated. This study demonstrated that the comparatively low yield stress of some wood areas was responsible for sandwich compression. When mechanically compressed, only the wood layer(s) with lower yield stress was compressed, leading to sandwich compression, regardless of whether the mechanical force was applied tangentially or radially.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0002","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To elucidate the mechanism of wood sandwich compression, the response of wood compressing yield stress to hygrothermal conditions was investigated in this study with respect to preheating temperature (30–210 °C) and moisture content (MC, 0–100 %). An associated functional model was developed to predict wood yield stress based on the measured MC and temperature in wood. A 1 % increase in wood MC or a 10 °C increase of temperature led to a decrease in wood yield stress exceeding 0.1 MPa. Significant variations in yield stress, exceeding 0.8 MPa, were observed between high MC layer(s) and the remaining layer(s) along the wood thickness when there was an MC variation over 5 %. Preheating the wood with by heating platens accelerated water/moisture migration in wood, resulting in relatively low yield stress in the wood interior areas where water/moisture had migrated. This study demonstrated that the comparatively low yield stress of some wood areas was responsible for sandwich compression. When mechanically compressed, only the wood layer(s) with lower yield stress was compressed, leading to sandwich compression, regardless of whether the mechanical force was applied tangentially or radially.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从屈服应力角度阐释木材夹层压缩的机理
摘要为了阐明木材夹层压缩的机理,本研究研究了木材压缩屈服应力对湿热条件下预热温度的响应(30–210 °C)和含水量(MC,0-100 %). 基于测量的木材中的MC和温度,开发了一个相关的函数模型来预测木材的屈服应力。A 1 % 木材MC或10的增加 温度升高°C导致木材屈服应力降低超过0.1 MPa。屈服应力的显著变化,超过0.8 当MC变化超过5 %. 用加热板预热木材会加速木材中的水分迁移,导致水分迁移的木材内部区域的屈服应力相对较低。这项研究表明,一些木材区域相对较低的屈服应力是夹层压缩的原因。当机械压缩时,无论机械力是切向还是径向施加,只有屈服应力较低的木材层被压缩,导致夹层压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
期刊最新文献
Degradation of Pinus sylvestris and Populus tremula by laccate Ganoderma species Wood density and chemical composition variation of Eucalyptus urophylla clone in different environments Wood discrimination of six commonly traded Phoebe and Machilus species using high-resolution plastid and nuclear DNA barcodes Physical, vibro-mechanical and optical properties of pernambuco in relation to bow-making qualitative evaluation and wood diversity Comparative wood and charcoal anatomy of Manilkara sp.: contribution for market inspections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1