The Role of Semantic Parsing in Understanding Procedural Text

Hossein Rajaby Faghihi, Parisa Kordjamshidi, C. Teng, J. Allen
{"title":"The Role of Semantic Parsing in Understanding Procedural Text","authors":"Hossein Rajaby Faghihi, Parisa Kordjamshidi, C. Teng, J. Allen","doi":"10.48550/arXiv.2302.06829","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help reasoning over the states of involved entities in a procedural text. We consider a deep semantic parser~(TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework.Second, we integrate semantic parsing information into state-of-the-art neural models to conduct procedural reasoning.Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"1792-1804"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help reasoning over the states of involved entities in a procedural text. We consider a deep semantic parser~(TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework.Second, we integrate semantic parsing information into state-of-the-art neural models to conduct procedural reasoning.Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义分析在理解程序文本中的作用
在本文中,我们研究了从深层语义解析器中提取的符号语义表示是否有助于推理过程文本中所涉及实体的状态。我们认为深度语义解析器(TRIPS)和语义角色标记是语义解析知识的两个来源。首先,我们提出了PROPOLIS,一个基于符号解析的过程推理框架。其次,我们将语义解析信息集成到最先进的神经模型中,以进行过程推理。我们的实验表明,明确地结合这种语义知识可以提高程序理解。本文提出了评估过程推理任务的新指标,阐明了神经模型、符号模型和集成模型之间的挑战和差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1