{"title":"Neo-Porphyrinoids: New Members of the Porphyrinoid Family","authors":"Poornenth Pushpanandan, Mangalampalli Ravikanth","doi":"10.1007/s41061-021-00338-6","DOIUrl":null,"url":null,"abstract":"<p>The four pyrrole rings and four meso carbons of tetrapyrrolic porphyrins can be arranged in different ways and the resulting porphyrin isomers exhibit very distinct electronic properties. The extensive research carried out on the porphyrins over the years has revealed that porphyrin can have several possible isomers and some of these have been identified and synthesized. Among the porphyrin isomers synthesized so far, porphycene and N-confused porphyrins have been investigated extensively whereas the other porphyrin isomers such as hemiporphycene, corrphycene and isoporphycene remain underdeveloped because of synthetic difficulties and their inherently unstable nature. Neoporphyrinoids are new members of the porphyrinoid family that were discovered serendipitously in 2011. Neoporphyrinoids are structural analogues of porphyrinoids with a confused pyrrole nitrogen linked to a meso carbon or the adjacent pyrrole carbon. Thus, neoporphyrinoids have an unusual structure in which pyrrole N is a part of a porphyrinoid framework and the lone pair of electrons on nitrogen participate in macrocyclic conjugation. It's been a decade since the discovery and different types of neoporphyrinoids, including regular, contracted and expanded neoporphyrinoids, have been synthesized by rational synthetic methodologies and their spectral, structural, aromatic and coordination properties have been studied. There is huge scope to develop different synthetic routes to produce new types of stable neoporphyrinoids to study their properties and potential applications. This article presents a brief overview of the synthesis, structure and properties of the neoporphyrinoids reported in this decade.</p>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00338-6","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00338-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 13
Abstract
The four pyrrole rings and four meso carbons of tetrapyrrolic porphyrins can be arranged in different ways and the resulting porphyrin isomers exhibit very distinct electronic properties. The extensive research carried out on the porphyrins over the years has revealed that porphyrin can have several possible isomers and some of these have been identified and synthesized. Among the porphyrin isomers synthesized so far, porphycene and N-confused porphyrins have been investigated extensively whereas the other porphyrin isomers such as hemiporphycene, corrphycene and isoporphycene remain underdeveloped because of synthetic difficulties and their inherently unstable nature. Neoporphyrinoids are new members of the porphyrinoid family that were discovered serendipitously in 2011. Neoporphyrinoids are structural analogues of porphyrinoids with a confused pyrrole nitrogen linked to a meso carbon or the adjacent pyrrole carbon. Thus, neoporphyrinoids have an unusual structure in which pyrrole N is a part of a porphyrinoid framework and the lone pair of electrons on nitrogen participate in macrocyclic conjugation. It's been a decade since the discovery and different types of neoporphyrinoids, including regular, contracted and expanded neoporphyrinoids, have been synthesized by rational synthetic methodologies and their spectral, structural, aromatic and coordination properties have been studied. There is huge scope to develop different synthetic routes to produce new types of stable neoporphyrinoids to study their properties and potential applications. This article presents a brief overview of the synthesis, structure and properties of the neoporphyrinoids reported in this decade.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.