{"title":"Effect of polyethylene glycol on BaTiO3 nanoparticles prepared by hydrothermal preparation","authors":"Yanfen Peng, Huiling Chen, Feng Shi, Jing Wang","doi":"10.1049/iet-nde.2020.0007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This work investigated the effect of polyethylene glycol (PEG) as an additive on barium titanate (BaTiO<sub>3</sub>, BT) nanoparticles (NPs) synthesised by a hydrothermal process. The structure, morphology, dispersion and crystallinity of BT NPs were tested by differential scanning calorimetry–thermogravimetric analysis, X-ray diffraction, field emission scanning electron microscope, transmission electron microscope and Raman spectroscopy, respectively. The results showed that the main phase of BT NPs includes the cubic BT phase with a tiny tetragonal phase. Also, the addition of PEG with different concentrations has a very positive effect on the control of the grain size and grain shape of the samples during the hydrothermal process. When the concentration of PEG is 1 g/l, BT NPs possess the best morphologies and highest dispersibility, and the average size is about 71.86 nm.</p>\n </div>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"3 3","pages":"69-73"},"PeriodicalIF":3.8000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0007","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-nde.2020.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
This work investigated the effect of polyethylene glycol (PEG) as an additive on barium titanate (BaTiO3, BT) nanoparticles (NPs) synthesised by a hydrothermal process. The structure, morphology, dispersion and crystallinity of BT NPs were tested by differential scanning calorimetry–thermogravimetric analysis, X-ray diffraction, field emission scanning electron microscope, transmission electron microscope and Raman spectroscopy, respectively. The results showed that the main phase of BT NPs includes the cubic BT phase with a tiny tetragonal phase. Also, the addition of PEG with different concentrations has a very positive effect on the control of the grain size and grain shape of the samples during the hydrothermal process. When the concentration of PEG is 1 g/l, BT NPs possess the best morphologies and highest dispersibility, and the average size is about 71.86 nm.