{"title":"Acoustic Representation Learning on Breathing and Speech Signals for COVID-19 Detection","authors":"Debottam Dutta, Debarpan Bhattacharya, Sriram Ganapathy, A. H. Poorjam, Deepak Mittal, M. Singh","doi":"10.21437/interspeech.2022-10376","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an approach for representation learning of audio signals for the task of COVID-19 detection. The raw audio samples are processed with a bank of 1-D convolutional filters that are parameterized as cosine modulated Gaussian functions. The choice of these kernels allows the interpretation of the filterbanks as smooth band-pass filters. The filtered outputs are pooled, log-compressed and used in a self-attention based relevance weighting mechanism. The relevance weighting emphasizes the key regions of the time-frequency decomposition that are important for the downstream task. The subsequent layers of the model consist of a recurrent architecture and the models are trained for a COVID-19 detection task. In our experiments on the Coswara data set, we show that the proposed model achieves significant performance improvements over the baseline system as well as other representation learning approaches. Further, the approach proposed is shown to be uniformly applicable for speech and breathing signals and for transfer learning from a larger data set. Copyright © 2022 ISCA.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2863-2867"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
呼吸和语音信号的声学表示学习用于COVID-19检测
在本文中,我们描述了一种用于COVID-19检测任务的音频信号表示学习方法。原始音频样本用一组参数化为余弦调制高斯函数的一维卷积滤波器进行处理。这些核的选择允许将滤波器组解释为平滑带通滤波器。过滤后的输出进行池化、日志压缩,并用于基于自关注的相关性加权机制。相关性加权强调时频分解的关键区域,这些区域对下游任务很重要。该模型的后续层由循环架构组成,并对模型进行COVID-19检测任务的训练。在我们对Coswara数据集的实验中,我们表明所提出的模型比基线系统以及其他表示学习方法取得了显着的性能改进。此外,所提出的方法被证明是统一适用于语音和呼吸信号,并从更大的数据集迁移学习。版权所有©2022 ISCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。