Synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives promoted by two bis-imidazolium-based ionic liquids

IF 0.9 Q4 CHEMISTRY, PHYSICAL Current Organocatalysis Pub Date : 2021-07-26 DOI:10.2174/2213337208666210726141934
M. Shirzad, Mitra Nasiri, Nader Daneshvar, F. Shirini, H. Tajik
{"title":"Synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives promoted by two bis-imidazolium-based ionic liquids","authors":"M. Shirzad, Mitra Nasiri, Nader Daneshvar, F. Shirini, H. Tajik","doi":"10.2174/2213337208666210726141934","DOIUrl":null,"url":null,"abstract":"\n\nIn this work, we have prepared two bis-dicationic ionic liquids with the same cationic core (Bis-imidazole) and different counter-anions using sulfuric acid and perchloric acids. After that, the efficiency and ability of these compounds as catalysts were investigated and compared in the promotion of Knoevenagel condensation and synthesis of benzo[b]pyran derivatives to see the effect of the anionic counter-part in the reaction.\n\n\n\nIn a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (2.0 mmol) and the desired amount of the mentioned acidic ionic liquids was heated at 90°C in the absence of solvent (Reaction A) or In a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (1.0 mmol), malononitrile, (1.1 mmol) and optimized amounts of the ionic liquid in water (3.0 mL) was heated at 80°C (Reaction B) for the appropriated time. After the completion of the reactions which were monitored by TLC (n-hexane: EtOAc; 3:1), 10 mL of water was added and the mixture was stirred for 2 minutes. Then, the products were separated by filtration and were washed several times with water. After drying, the pure products were obtained while there was no need to further.\n\n\n\nComparison of the obtained results from both of the ionic liquids revealed that [H2-Bisim][HSO4]2 because of its more acidic structure had a more catalytic activity for the preparation of 1,8-dioxo-octahydro-xanthene derivatives but [H2-Bisim][ClO4]2 was relatively more efficient for the synthesis of tetrahydrobenzo[b]pyran derivatives since the stronger acidic nature of [H2-Bisim][HSO4]2 may prevent the simple activation of malononitrile in the reaction media.\n\n\n\nIn this study, we have introduced efficient methods for the synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives in the presence of catalytic amounts of [H2-Bisim][ClO4]2 and [H2-Bisim][HSO4]2 These methods have several advantages such as ease of preparation and handling of the catalysts, high reaction rates, excellent yields, eco-friendly procedures and simple work-up.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337208666210726141934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have prepared two bis-dicationic ionic liquids with the same cationic core (Bis-imidazole) and different counter-anions using sulfuric acid and perchloric acids. After that, the efficiency and ability of these compounds as catalysts were investigated and compared in the promotion of Knoevenagel condensation and synthesis of benzo[b]pyran derivatives to see the effect of the anionic counter-part in the reaction. In a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (2.0 mmol) and the desired amount of the mentioned acidic ionic liquids was heated at 90°C in the absence of solvent (Reaction A) or In a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (1.0 mmol), malononitrile, (1.1 mmol) and optimized amounts of the ionic liquid in water (3.0 mL) was heated at 80°C (Reaction B) for the appropriated time. After the completion of the reactions which were monitored by TLC (n-hexane: EtOAc; 3:1), 10 mL of water was added and the mixture was stirred for 2 minutes. Then, the products were separated by filtration and were washed several times with water. After drying, the pure products were obtained while there was no need to further. Comparison of the obtained results from both of the ionic liquids revealed that [H2-Bisim][HSO4]2 because of its more acidic structure had a more catalytic activity for the preparation of 1,8-dioxo-octahydro-xanthene derivatives but [H2-Bisim][ClO4]2 was relatively more efficient for the synthesis of tetrahydrobenzo[b]pyran derivatives since the stronger acidic nature of [H2-Bisim][HSO4]2 may prevent the simple activation of malononitrile in the reaction media. In this study, we have introduced efficient methods for the synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives in the presence of catalytic amounts of [H2-Bisim][ClO4]2 and [H2-Bisim][HSO4]2 These methods have several advantages such as ease of preparation and handling of the catalysts, high reaction rates, excellent yields, eco-friendly procedures and simple work-up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种双咪唑基离子液体催化合成1,8-二氧基八氢杂蒽和四氢苯并[b]吡喃衍生物
在这项工作中,我们用硫酸和高氯酸制备了两种具有相同阳离子核(双咪唑)和不同反阴离子的双二dicionic离子液体。然后,研究并比较了这些化合物作为催化剂在促进Knoevenagel缩合和合成苯并[b]吡喃衍生物方面的效率和能力,以观察阴离子对映体在反应中的作用。在25 mL圆底烧瓶中,在没有溶剂的情况下,将醛(1.0 mmol)、1,3-环二羰基(2.0 mmol)和所需量的上述酸性离子液体的混合物在90°C下加热(反应a)或在25 mL圆底烧瓶中将醛(1.0mmol)、,(1.1 mmol)和优化量的离子液体在水中(3.0 mL)在80℃下加热(反应B)适当的时间。在通过TLC(正己烷∶EtOAc;3∶1)监测的反应完成后,加入10mL水,并将混合物搅拌2分钟。然后,通过过滤分离产物,并用水洗涤数次。干燥后,在不需要进一步干燥的情况下获得纯产物。对两种离子液体获得的结果的比较表明,[H2-Bisim][HSO4]2由于其酸性更强的结构,对制备1,8-二氧代-八氢-蒽衍生物具有更高的催化活性,但[H2-Bisim][ClO4]2对合成四氢苯并[b]吡喃衍生物相对更有效,因为[H2-Bisim][HSO4]2的强酸性可能防止丙二腈在反应介质中的简单活化。在本研究中,我们介绍了在催化量为[H2-Bisim][ClO4]2和[H2-Bisim][HSO4]2的情况下合成1,8-二氧代-八氢-蒽和四氢苯并[b]吡喃衍生物的有效方法,环保的程序和简单的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Organocatalysis
Current Organocatalysis CHEMISTRY, PHYSICAL-
CiteScore
2.00
自引率
0.00%
发文量
28
期刊介绍: Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.
期刊最新文献
Biotransformation of Cinnamic Acid, Cinnamaldehyde, Furfural and Epoxidation of Cyclohexene by Plant Catalase Water Extract of Onion Catalyst: A Sustainable Approach for the Synthesis of 4-Substituted 1,5-Benzodiazepine Derivatives via an In Situ Generated Enaminones Design of Dendritic Foldamers as Catalysts for Organic Synthesis A Review on the Recent Progress of Layered Double Hydroxides (LDHs)- based Catalysts for Heterocyclic Synthesis Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1