Comprehensive technical review of the high-efficiency low-emission technology in advanced coal-fired power plants

IF 4.9 3区 工程技术 Q1 ENGINEERING, CHEMICAL Reviews in Chemical Engineering Pub Date : 2021-08-18 DOI:10.1515/revce-2020-0107
Soonho Lee, Jongho Kim, Arash Tahmasebi, C. Jeon, Yangxian Liu, Jianaglong Yu
{"title":"Comprehensive technical review of the high-efficiency low-emission technology in advanced coal-fired power plants","authors":"Soonho Lee, Jongho Kim, Arash Tahmasebi, C. Jeon, Yangxian Liu, Jianaglong Yu","doi":"10.1515/revce-2020-0107","DOIUrl":null,"url":null,"abstract":"Abstract Advancements in supercritical (SC), ultrasupercritical (USC), and advanced USC coal-fired power plants have been achieved through the development of enhanced materials utilized in advanced steam cycles and through the deployment of advanced emission control systems. These are referred to as high-efficiency low-emission (HELE) technologies, which may solve numerous issues associated with coal-based power generation. There is a clear global transition from subcritical to advanced power plant types and significant R&D work on HELE technologies. Therefore, this comprehensive review covers the latest HELE technology deployment in major coal-consuming countries and their R&D roadmaps to advance HELE technologies. In spite of the various advantages of HELE technologies, there have been numerous technical challenges relevant to achieving the HELE steam conditions and deploying low emission control technologies in the HELE systems. Hence, this review covers the technical challenges and the relevant recent research by using various coal combustion test facilities. The current focus for the progression from USC boilers to advanced USC boilers is a successful demonstration of the developed high-performance alloys under the advanced steam conditions. This review covers the current status of research and development of advanced USC (A-USC) materials and challenges based on the major material research programs.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2020-0107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Advancements in supercritical (SC), ultrasupercritical (USC), and advanced USC coal-fired power plants have been achieved through the development of enhanced materials utilized in advanced steam cycles and through the deployment of advanced emission control systems. These are referred to as high-efficiency low-emission (HELE) technologies, which may solve numerous issues associated with coal-based power generation. There is a clear global transition from subcritical to advanced power plant types and significant R&D work on HELE technologies. Therefore, this comprehensive review covers the latest HELE technology deployment in major coal-consuming countries and their R&D roadmaps to advance HELE technologies. In spite of the various advantages of HELE technologies, there have been numerous technical challenges relevant to achieving the HELE steam conditions and deploying low emission control technologies in the HELE systems. Hence, this review covers the technical challenges and the relevant recent research by using various coal combustion test facilities. The current focus for the progression from USC boilers to advanced USC boilers is a successful demonstration of the developed high-performance alloys under the advanced steam conditions. This review covers the current status of research and development of advanced USC (A-USC) materials and challenges based on the major material research programs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进燃煤电厂高效低排放技术综合技术综述
超临界(SC)、超超临界(USC)和先进USC燃煤电厂的进步是通过开发先进蒸汽循环中使用的增强材料和部署先进的排放控制系统来实现的。这些被称为高效低排放(HELE)技术,可以解决与煤基发电相关的许多问题。全球从亚临界电厂类型向先进电厂类型明显过渡,HELE技术的研发工作也很重要。因此,本综述涵盖了主要煤炭消费国最新的HELE技术部署及其推进HELE技术的研发路线图。尽管HELE技术具有各种优势,但在实现HELE蒸汽条件和在HELE系统中部署低排放控制技术方面存在许多技术挑战。因此,本文综述了利用各种煤燃烧试验设备所面临的技术挑战和相关的最新研究。目前从超超临界锅炉向先进超超临界锅炉发展的重点是在先进蒸汽条件下成功展示所开发的高性能合金。本文综述了先进超细碳纤维(a -超细碳纤维)材料的研究与发展现状,以及基于主要材料研究项目的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Chemical Engineering
Reviews in Chemical Engineering 工程技术-工程:化工
CiteScore
12.30
自引率
0.00%
发文量
37
审稿时长
6 months
期刊介绍: Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.
期刊最新文献
Lithium–sulfur batteries beyond lithium-ion counterparts: reasonable substituting challenges, current research focus, binding critical role, and cathode designing A review of confined impinging jet reactor (CIJR) with a perspective of mRNA-LNP vaccine production Metal nanoparticles loaded polyurethane nano-composites and their catalytic/antimicrobial applications: a critical review Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products A decade development of lipase catalysed synthesis of acylglycerols using reactors: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1