The influence of chain length on the sorption of C4-C10 perfluorocarboxylic acids during transport in a sand

IF 8.1 Q1 ENGINEERING, ENVIRONMENTAL Journal of hazardous materials letters Pub Date : 2023-08-19 DOI:10.1016/j.hazl.2023.100084
Ying Lyu , Baohua Wang , Mark L. Brusseau
{"title":"The influence of chain length on the sorption of C4-C10 perfluorocarboxylic acids during transport in a sand","authors":"Ying Lyu ,&nbsp;Baohua Wang ,&nbsp;Mark L. Brusseau","doi":"10.1016/j.hazl.2023.100084","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of chain length on the retention and transport of perfluorocarboxylic acids (PFCAs) in a quartz sand was investigated. Short-chain (C4–C7: PFBA, PFPeA, PFHxA, PFHpA) and long-chain (C8–C10: PFOA, PFNA, PFDA) PFCAs were selected as a representative homologous series. Miscible-displacement transport experiments were conducted under saturated conditions to characterize the magnitudes of sorption mediating retention and transport. Quantitative-structure/property-relationship (QSPR) analysis was applied to characterize the influence of molecular size on sorption. The transport of the long-chain PFCAs exhibited greater retardation than the short-chain PFCAs. The log of the equilibrium sorption coefficient (<em>K</em><sub><em>d</em></sub>) exhibited a biphasic relationship with carbon number and molar volume, with the magnitude of measured sorption for the short-chain PFCAs significantly greater than would be predicted using the QSPR regression developed for the long-chain PFCAs. This is consistent with batch-measured data reported in the literature, and likely reflects the relative influence of different sorption mechanisms for the short-chain vs long-chain PFCAs.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"4 ","pages":"Article 100084"},"PeriodicalIF":8.1000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911023000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of chain length on the retention and transport of perfluorocarboxylic acids (PFCAs) in a quartz sand was investigated. Short-chain (C4–C7: PFBA, PFPeA, PFHxA, PFHpA) and long-chain (C8–C10: PFOA, PFNA, PFDA) PFCAs were selected as a representative homologous series. Miscible-displacement transport experiments were conducted under saturated conditions to characterize the magnitudes of sorption mediating retention and transport. Quantitative-structure/property-relationship (QSPR) analysis was applied to characterize the influence of molecular size on sorption. The transport of the long-chain PFCAs exhibited greater retardation than the short-chain PFCAs. The log of the equilibrium sorption coefficient (Kd) exhibited a biphasic relationship with carbon number and molar volume, with the magnitude of measured sorption for the short-chain PFCAs significantly greater than would be predicted using the QSPR regression developed for the long-chain PFCAs. This is consistent with batch-measured data reported in the literature, and likely reflects the relative influence of different sorption mechanisms for the short-chain vs long-chain PFCAs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链长对C4-C10全氟羧酸在砂中传输过程中吸附的影响
研究了链长对全氟羧酸(PFCAs)在石英砂中保留和转移的影响。选择短链(C4-C7: PFBA, PFPeA, PFHxA, PFHpA)和长链(C8-C10: PFOA, PFNA, PFDA) PFCAs作为代表性同源系列。在饱和条件下进行了混相位移输运实验,以表征吸附介导保留和输运的大小。采用定量结构/性能关系(QSPR)分析表征了分子大小对吸附的影响。长链PFCAs的转运比短链PFCAs表现出更大的阻滞。平衡吸附系数(Kd)的对数与碳数和摩尔体积呈双相关系,短链PFCAs的吸附量明显大于使用长链PFCAs的QSPR回归预测的吸附量。这与文献中报道的批量测量数据一致,并可能反映了不同吸附机制对短链和长链PFCAs的相对影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
期刊最新文献
Waste PU-derived PDMS/ZIF-8/bentonite composite sponge for reusable oil sorption Occurrence and transformation of antimony in a full-scale municipal wastewater treatment plant Mechanism of selenite reduction in Bacillus subtilis SR41: Role of thioredoxin reductase and threshold-driven transcriptomic response Phytoremediation and phytoscreening of micropollutants using black poplar: Integration of LC-MS/MS multiscreening and rhizospheric microbiome analysis Copper and cadmium toxicity affecting in vitro growth and Scopelophila cataractae development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1