Measuring the roller skew angle in the loading zone of a cylindrical roller bearing with strain gauges for long-term monitoring

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Tribology-transactions of The Asme Pub Date : 2023-08-18 DOI:10.1115/1.4063211
Zhixiang Zhao, Xi Wang, Yu Hou
{"title":"Measuring the roller skew angle in the loading zone of a cylindrical roller bearing with strain gauges for long-term monitoring","authors":"Zhixiang Zhao, Xi Wang, Yu Hou","doi":"10.1115/1.4063211","DOIUrl":null,"url":null,"abstract":"\n Roller skew in roller bearings can cause heat generation in roller-race and roller-rib contacts, thus reducing bearing life. It is significant to obtain the roller skew angle in situ for guiding the bearing design and adjusting the operating conditions. In this study, a method for measuring the roller skew angle in the loading zone of a cylindrical roller bearing with strain gauges is presented. The measurement principle is that the roller skew angle is related to the movement of the contact line between the roller and raceway. The strain gauge array on the outer surface of the outer ring shows temporally separated responses when roller skew occurs. An experimental system is developed to validate the effectiveness of the proposed method for cylindrical roller bearing measurements. A laser measurement system is incorporated into the experimental system to detect the horizontal displacement of the reflected spot using a high-speed camera, which is then converted into the roller skew angle. The calculated roller skew angle from the time shift of the strain response agrees well with the value of a specially modified roller independently measured with the laser detection system. Compared with other measurement methods, the proposed method provides a potential way to achieve the nondestructive measurement of the roller skew angle in actual service for long-term purposes.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063211","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Roller skew in roller bearings can cause heat generation in roller-race and roller-rib contacts, thus reducing bearing life. It is significant to obtain the roller skew angle in situ for guiding the bearing design and adjusting the operating conditions. In this study, a method for measuring the roller skew angle in the loading zone of a cylindrical roller bearing with strain gauges is presented. The measurement principle is that the roller skew angle is related to the movement of the contact line between the roller and raceway. The strain gauge array on the outer surface of the outer ring shows temporally separated responses when roller skew occurs. An experimental system is developed to validate the effectiveness of the proposed method for cylindrical roller bearing measurements. A laser measurement system is incorporated into the experimental system to detect the horizontal displacement of the reflected spot using a high-speed camera, which is then converted into the roller skew angle. The calculated roller skew angle from the time shift of the strain response agrees well with the value of a specially modified roller independently measured with the laser detection system. Compared with other measurement methods, the proposed method provides a potential way to achieve the nondestructive measurement of the roller skew angle in actual service for long-term purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用应变片测量圆柱滚子轴承加载区的滚子倾斜角,用于长期监测
滚子轴承中的滚子偏斜会导致滚子-滚道和滚子-罗纹接触产生热量,从而降低轴承寿命。原位获取滚子斜倾角对指导轴承设计和调整工况具有重要意义。本文提出了一种用应变片测量圆柱滚子轴承加载区滚子偏斜角的方法。测量原理是滚子斜倾角与滚子与滚道之间接触线的运动有关。外环外表面的应变计阵列在辊斜发生时显示出暂时分离的响应。为验证该方法在圆柱滚子轴承测量中的有效性,建立了实验系统。在实验系统中加入激光测量系统,利用高速摄像机检测反射光斑的水平位移,然后将其转换为滚子倾斜角度。根据应变响应的时移计算出的滚子倾斜角与激光检测系统独立测得的经过特殊改造的滚子倾斜角吻合较好。与其他测量方法相比,该方法为实现实际使用中辊斜角的长期无损测量提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tribology-transactions of The Asme
Journal of Tribology-transactions of The Asme 工程技术-工程:机械
CiteScore
4.20
自引率
12.00%
发文量
117
审稿时长
4.1 months
期刊介绍: The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes. Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints
期刊最新文献
Experimental investigations on the development of hybrid metal matrix composite of Al7075 on microstructural, mechanical, and dry sliding aspects Structural optimization of the main bearing in a tunnel boring machine considering clearance Improved wear profile modelling of planetary roller screw mechanism with thread optimization Nano Magnesium silicate hydroxide as synergistic lubricant additive with micro carbon sphere for enhanced tribological properties Recent progress on the tribological applications of solid lubricants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1