Fluoridation routes, function mechanism and application of fluorinated/fluorine-doped nanocarbon-based materials for various batteries: A review

IF 14.9 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2023-10-01 DOI:10.1016/j.jechem.2023.06.020
Weicui Liu , Nanping Deng , Gang Wang , Ruru Yu , Xiaoxiao Wang , Bowen Cheng , Jingge Ju , Weimin Kang
{"title":"Fluoridation routes, function mechanism and application of fluorinated/fluorine-doped nanocarbon-based materials for various batteries: A review","authors":"Weicui Liu ,&nbsp;Nanping Deng ,&nbsp;Gang Wang ,&nbsp;Ruru Yu ,&nbsp;Xiaoxiao Wang ,&nbsp;Bowen Cheng ,&nbsp;Jingge Ju ,&nbsp;Weimin Kang","doi":"10.1016/j.jechem.2023.06.020","DOIUrl":null,"url":null,"abstract":"<div><p>With the popularity and widespread applications of electronics, higher demands are being placed on the performance of battery materials. Due to the large difference in electronegativity between fluorine and carbon atoms, doping fluorine atoms in nanocarbon-based materials is considered an effective way to improve the performance of used battery. However, there is still a blank in the systematic review of the mechanism and research progress of fluorine-doped nanostructured carbon materials in various batteries. In this review, the synthetic routes of fluorinated/fluorine-doped nanocarbon-based (CF<em><sub>x</sub></em>) materials under different fluorine sources and the function mechanism of CF<em><sub>x</sub></em> in various batteries are reviewed in detail. Subsequently, judging from the dependence between the structure and electrochemical performance of nanocarbon sources, the progress of CF<em><sub>x</sub></em> based on different dimensions (0D–3D) for primary battery applications is reviewed and the balance between energy density and power density is critically discussed. In addition, the roles of CF<em><sub>x</sub></em> materials in secondary batteries and their current applications in recent years are summarized in detail to illustrate the effect of introducing F atoms. Finally, we envisage the prospect of CF<em><sub>x</sub></em> materials and offer some insights and recommendations to facilitate the further exploration of CF<em><sub>x</sub></em> materials for various high-performance battery applications.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"85 ","pages":"Pages 363-393"},"PeriodicalIF":14.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623003662","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

Abstract

With the popularity and widespread applications of electronics, higher demands are being placed on the performance of battery materials. Due to the large difference in electronegativity between fluorine and carbon atoms, doping fluorine atoms in nanocarbon-based materials is considered an effective way to improve the performance of used battery. However, there is still a blank in the systematic review of the mechanism and research progress of fluorine-doped nanostructured carbon materials in various batteries. In this review, the synthetic routes of fluorinated/fluorine-doped nanocarbon-based (CFx) materials under different fluorine sources and the function mechanism of CFx in various batteries are reviewed in detail. Subsequently, judging from the dependence between the structure and electrochemical performance of nanocarbon sources, the progress of CFx based on different dimensions (0D–3D) for primary battery applications is reviewed and the balance between energy density and power density is critically discussed. In addition, the roles of CFx materials in secondary batteries and their current applications in recent years are summarized in detail to illustrate the effect of introducing F atoms. Finally, we envisage the prospect of CFx materials and offer some insights and recommendations to facilitate the further exploration of CFx materials for various high-performance battery applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氟化/掺氟纳米碳基材料在各种电池中的氟化途径、作用机理及应用综述
随着电子技术的普及和广泛应用,对电池材料的性能提出了更高的要求。由于氟原子和碳原子之间的电负性差异很大,在纳米碳基材料中掺杂氟原子被认为是提高废旧电池性能的有效途径。然而,对掺氟纳米结构碳材料在各种电池中的作用机理和研究进展进行系统综述仍存在空白。本文详细综述了不同氟源下氟化/氟掺杂纳米碳基材料的合成路线以及CFx在各种电池中的作用机理。随后,从纳米碳源的结构和电化学性能之间的相关性来看,回顾了基于不同尺寸(0D–3D)的CFx在一次电池应用中的进展,并对能量密度和功率密度之间的平衡进行了批判性的讨论。此外,还详细总结了近年来CFx材料在二次电池中的作用及其应用现状,以说明引入F原子的效果。最后,我们展望了CFx材料的前景,并提供了一些见解和建议,以促进CFx材料在各种高性能电池应用中的进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Electrode heterogeneous modeling and cross-scale analysis under multi-physics coupling: Microstructure-dependent mechanism for nonlinear degradation Sustainable biopolymer hydrogel electrolytes for electrochromics: Materials, mechanisms, and roadmaps to next-generation smart technologies Layer-dependent ammonia activation on VOx/Cu inverse catalysts Coupled reaction pathways and microenvironment engineering in IrOx/Nb2O5 for efficient water electrolysis Homogenizing bandgap distribution of Sb2(S,Se)3 absorber boosting the efficiency of solar cells to 10.83%
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1