Murad Ali, Farmanullah Khan, Subhanullah Subhanullah, W. Ahmad, M. Ishaq, M. Saeed
{"title":"Enhancing wheat productivity and soil physical properties of water eroded agricultural land through integrated nutrient management","authors":"Murad Ali, Farmanullah Khan, Subhanullah Subhanullah, W. Ahmad, M. Ishaq, M. Saeed","doi":"10.25252/SE/18/61450","DOIUrl":null,"url":null,"abstract":"Agricultural land in Pakistan is decreasing due to development of infrastructure and in order to feed its masses, agricultural activities are shifting towards sloping land where soil loss through surface runoff process is the sternest ecological threat to sustainable agriculture. Improving soil fertility and crop productivity through integrated nutrients management (INM) is a globally accepted practice. The reported study was conducted during 2014-15 for field investigations in the improvement of eroded soil’s physical characteristics and crop productivity using integrated nutrients management techniques. The treatments contained combinations of NPK (% of recommended dose 120:90:60 kg NPK ḥa -1 ), FYM (t ha -1 ) and Poultry manure PM (t ha -1 ) respectively as; 0:0:0, 100%:0:0, 0:20:0, 25%:15:0, 50%:10:0, 75%:5:0, 0:0:10, 25:0:7.5, 50%:0:5, 75%:0:2.5, 0:5:2.5, 25%:5:2.5, 50%:5:2.5, 75%:5:2.5. Results revealed that 50%:5:2.5 combination of nutrient sources significantly (p ≤ 0.05) improved spike m -2 (by 34%), grains spike -1 (by 38%) and grain yield (by 90%) over the control treatment. Regarding soil physical properties, 0:20:0 combination reduced soil bulk density while improving available water, organic matter content and saturation water percentage at 0-15 cm soil depth. Positive correlation of soil organic matter was observed with available water holding capacity (ṙ = 0.92) and saturation percentage (ṙ = 0.93) while negatively co-related with ṣoil bulk density (ṙ = -0.96). It was concluded that chemical fertilizer’s improvement in physical properties of eroded soil and the resultant production was significantly lagging behind that achieved with integrated nutrient management. Under the current experimental conditions, 50%:5:2.5 combination of nutrient sources application restituted the physical properties of eroded soil and showed asset over rest of the INM and their unshared applications.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25252/SE/18/61450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Agricultural land in Pakistan is decreasing due to development of infrastructure and in order to feed its masses, agricultural activities are shifting towards sloping land where soil loss through surface runoff process is the sternest ecological threat to sustainable agriculture. Improving soil fertility and crop productivity through integrated nutrients management (INM) is a globally accepted practice. The reported study was conducted during 2014-15 for field investigations in the improvement of eroded soil’s physical characteristics and crop productivity using integrated nutrients management techniques. The treatments contained combinations of NPK (% of recommended dose 120:90:60 kg NPK ḥa -1 ), FYM (t ha -1 ) and Poultry manure PM (t ha -1 ) respectively as; 0:0:0, 100%:0:0, 0:20:0, 25%:15:0, 50%:10:0, 75%:5:0, 0:0:10, 25:0:7.5, 50%:0:5, 75%:0:2.5, 0:5:2.5, 25%:5:2.5, 50%:5:2.5, 75%:5:2.5. Results revealed that 50%:5:2.5 combination of nutrient sources significantly (p ≤ 0.05) improved spike m -2 (by 34%), grains spike -1 (by 38%) and grain yield (by 90%) over the control treatment. Regarding soil physical properties, 0:20:0 combination reduced soil bulk density while improving available water, organic matter content and saturation water percentage at 0-15 cm soil depth. Positive correlation of soil organic matter was observed with available water holding capacity (ṙ = 0.92) and saturation percentage (ṙ = 0.93) while negatively co-related with ṣoil bulk density (ṙ = -0.96). It was concluded that chemical fertilizer’s improvement in physical properties of eroded soil and the resultant production was significantly lagging behind that achieved with integrated nutrient management. Under the current experimental conditions, 50%:5:2.5 combination of nutrient sources application restituted the physical properties of eroded soil and showed asset over rest of the INM and their unshared applications.