Energy and power management system for microgrids of large-scale building prosumers

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2023-02-23 DOI:10.1049/esi2.12095
Dimitra G. Kyriakou, Fotios D. Kanellos
{"title":"Energy and power management system for microgrids of large-scale building prosumers","authors":"Dimitra G. Kyriakou,&nbsp;Fotios D. Kanellos","doi":"10.1049/esi2.12095","DOIUrl":null,"url":null,"abstract":"<p>A method for optimal energy and power management of microgrids consisting of mega buildings, plug-in electric vehicles (PEVs) and renewable energy sources (RES) with low computation requirements is proposed by the authors. Thermal and electrical loads are considered for the operation scheduling of the microgrid. In case of non-interconnected operation of the microgrid with the main power grid, the proposed method allows the microgrid to meet the power demand by the buildings and distribution loads exploiting only the hosted PEVs, the integrated RES and, if it is necessary or financially optimal, building auxiliary diesel generators. The primary goal of the suggested algorithm is to significantly reduce the overall daily cost of the microgrid's operation while simultaneously meeting a wide range of constraints. The implementation of the method is based on the exploitation of a two-level hierarchical multi-agent system (MAS) at the level of the microgrid. Suitably defined flexibilities of the microgrid's components to change their power are used to implement optimal power dispatch to them. Detailed simulation results indicated that a remarkable cost reduction of 27% can be achieved.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12095","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

A method for optimal energy and power management of microgrids consisting of mega buildings, plug-in electric vehicles (PEVs) and renewable energy sources (RES) with low computation requirements is proposed by the authors. Thermal and electrical loads are considered for the operation scheduling of the microgrid. In case of non-interconnected operation of the microgrid with the main power grid, the proposed method allows the microgrid to meet the power demand by the buildings and distribution loads exploiting only the hosted PEVs, the integrated RES and, if it is necessary or financially optimal, building auxiliary diesel generators. The primary goal of the suggested algorithm is to significantly reduce the overall daily cost of the microgrid's operation while simultaneously meeting a wide range of constraints. The implementation of the method is based on the exploitation of a two-level hierarchical multi-agent system (MAS) at the level of the microgrid. Suitably defined flexibilities of the microgrid's components to change their power are used to implement optimal power dispatch to them. Detailed simulation results indicated that a remarkable cost reduction of 27% can be achieved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型建筑生产用户微电网的能源和电力管理系统
提出了一种由大型建筑、插电式电动汽车(pev)和可再生能源(RES)组成的低计算量微电网的能量和功率优化管理方法。微电网的运行调度考虑了热负荷和电负荷。在微电网与主电网非互联运行的情况下,所提出的方法允许微电网仅利用托管的pev、集成的RES以及必要或经济上最优的辅助柴油发电机来满足建筑物和配电负荷的电力需求。提出的算法的主要目标是显著降低微电网运行的总体每日成本,同时满足广泛的约束。该方法的实现基于在微电网层面利用两级分层多智能体系统(MAS)。通过适当定义微电网各组成部分的功率变化灵活性,实现对微电网各组成部分的最优功率调度。详细的仿真结果表明,该方法可以显著降低27%的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium‐ion batteries Low‐carbon economic operation of multi‐energy microgrid based on multi‐level robust optimisation Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation Estimation and prediction method of lithium battery state of health based on ridge regression and gated recurrent unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1