A Circuit-Level Implementation of Voltage-Tuning Scheme for Realizing Optical PAM-4 Using Three-Segment Microring Modulator

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2020-04-01 DOI:10.46604/ijeti.2020.5072
Rui Wang
{"title":"A Circuit-Level Implementation of Voltage-Tuning Scheme for Realizing Optical PAM-4 Using Three-Segment Microring Modulator","authors":"Rui Wang","doi":"10.46604/ijeti.2020.5072","DOIUrl":null,"url":null,"abstract":"Silicon Photonics, as one of the solutions to satisfy ever-increasing data bandwidth growth, becomes more challenging due to the latest technologies such as Internet of Things (IoT). Higher order pulse amplitude modulation (PAM) schemes is one of the answers to push towards higher data transmission in the presence of bandwidth limited optical devices. In this paper, we have implemented a circuit-level PAM-4 transmitter design based on the voltage-tuning scheme for realizing optical PAM-4 using a three-segment microring modulator. Simulation results based on the extracted layout using TSMC 65nm LP technology and IMEC-ePIXfab SiPhotonics ISIPP50G technology show that our proposed circuit-level transmitter structure is able to achieve PAM-4 data rate of 25-Gb/s with extinction ratio of 9dB and PAM-4 energy efficiency of 0.5pJ/bit. The results also verify that the scheme is able to achieve high tuning flexibility, but the proposed transmitter will consume more power as a result.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"10 1","pages":"91-106"},"PeriodicalIF":1.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2020.5072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon Photonics, as one of the solutions to satisfy ever-increasing data bandwidth growth, becomes more challenging due to the latest technologies such as Internet of Things (IoT). Higher order pulse amplitude modulation (PAM) schemes is one of the answers to push towards higher data transmission in the presence of bandwidth limited optical devices. In this paper, we have implemented a circuit-level PAM-4 transmitter design based on the voltage-tuning scheme for realizing optical PAM-4 using a three-segment microring modulator. Simulation results based on the extracted layout using TSMC 65nm LP technology and IMEC-ePIXfab SiPhotonics ISIPP50G technology show that our proposed circuit-level transmitter structure is able to achieve PAM-4 data rate of 25-Gb/s with extinction ratio of 9dB and PAM-4 energy efficiency of 0.5pJ/bit. The results also verify that the scheme is able to achieve high tuning flexibility, but the proposed transmitter will consume more power as a result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三段微环调制器实现光PAM-4电压调谐方案的电路级实现
硅光子学作为满足不断增长的数据带宽增长的解决方案之一,由于物联网(IoT)等最新技术的发展,变得更具挑战性。高阶脉冲幅度调制(PAM)方案是在带宽有限的光器件存在下推动更高数据传输的答案之一。在本文中,我们实现了一种基于电压调谐方案的电路级PAM-4发射机设计,利用三段微环调制器实现光学PAM-4。基于TSMC 65nm LP技术和IMEC-ePIXfab SiPhotonics ISIPP50G技术的提取布局仿真结果表明,我们提出的电路级发射机结构能够实现PAM-4数据速率为25 gb /s,消光比为9dB, PAM-4能效为0.5pJ/bit。结果也验证了该方案能够实现较高的调谐灵活性,但所提出的发射机将因此消耗更多的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1