{"title":"A Circuit-Level Implementation of Voltage-Tuning Scheme for Realizing Optical PAM-4 Using Three-Segment Microring Modulator","authors":"Rui Wang","doi":"10.46604/ijeti.2020.5072","DOIUrl":null,"url":null,"abstract":"Silicon Photonics, as one of the solutions to satisfy ever-increasing data bandwidth growth, becomes more challenging due to the latest technologies such as Internet of Things (IoT). Higher order pulse amplitude modulation (PAM) schemes is one of the answers to push towards higher data transmission in the presence of bandwidth limited optical devices. In this paper, we have implemented a circuit-level PAM-4 transmitter design based on the voltage-tuning scheme for realizing optical PAM-4 using a three-segment microring modulator. Simulation results based on the extracted layout using TSMC 65nm LP technology and IMEC-ePIXfab SiPhotonics ISIPP50G technology show that our proposed circuit-level transmitter structure is able to achieve PAM-4 data rate of 25-Gb/s with extinction ratio of 9dB and PAM-4 energy efficiency of 0.5pJ/bit. The results also verify that the scheme is able to achieve high tuning flexibility, but the proposed transmitter will consume more power as a result.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"10 1","pages":"91-106"},"PeriodicalIF":1.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2020.5072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon Photonics, as one of the solutions to satisfy ever-increasing data bandwidth growth, becomes more challenging due to the latest technologies such as Internet of Things (IoT). Higher order pulse amplitude modulation (PAM) schemes is one of the answers to push towards higher data transmission in the presence of bandwidth limited optical devices. In this paper, we have implemented a circuit-level PAM-4 transmitter design based on the voltage-tuning scheme for realizing optical PAM-4 using a three-segment microring modulator. Simulation results based on the extracted layout using TSMC 65nm LP technology and IMEC-ePIXfab SiPhotonics ISIPP50G technology show that our proposed circuit-level transmitter structure is able to achieve PAM-4 data rate of 25-Gb/s with extinction ratio of 9dB and PAM-4 energy efficiency of 0.5pJ/bit. The results also verify that the scheme is able to achieve high tuning flexibility, but the proposed transmitter will consume more power as a result.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.