Deep-learning-based nanowire detection in AFM images for automated nanomanipulation

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2021-01-29 DOI:10.1063/10.0003218
Huitian Bai, Sen Wu
{"title":"Deep-learning-based nanowire detection in AFM images for automated nanomanipulation","authors":"Huitian Bai, Sen Wu","doi":"10.1063/10.0003218","DOIUrl":null,"url":null,"abstract":"Atomic force microscope (AFM)-based nanomanipulation has been proved to be a possible method for assembling various nanoparticles into complex patterns and devices. To achieve efficient and fully automated nanomanipulation, nanoparticles on the substrate must be identified precisely and automatically. This work focuses on an autodetection method for flexible nanowires using a deep learning technique. An instance segmentation network based on You Only Look Once version 3 (YOLOv3) and a fully convolutional network (FCN) is applied to segment all movable nanowires in AFM images. Combined with follow-up image morphology and fitting algorithms, this enables detection of postures and positions of nanowires at a high abstraction level. Benefitting from these algorithms, our program is able to automatically detect nanowires of different morphologies with nanometer resolution and has over 90% reliability in the testing dataset. The detection results are less affected by image complexity than the results of existing methods and demonstrate the good robustness of this algorithm.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":"4 1","pages":"013002"},"PeriodicalIF":3.5000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0003218","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0003218","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Atomic force microscope (AFM)-based nanomanipulation has been proved to be a possible method for assembling various nanoparticles into complex patterns and devices. To achieve efficient and fully automated nanomanipulation, nanoparticles on the substrate must be identified precisely and automatically. This work focuses on an autodetection method for flexible nanowires using a deep learning technique. An instance segmentation network based on You Only Look Once version 3 (YOLOv3) and a fully convolutional network (FCN) is applied to segment all movable nanowires in AFM images. Combined with follow-up image morphology and fitting algorithms, this enables detection of postures and positions of nanowires at a high abstraction level. Benefitting from these algorithms, our program is able to automatically detect nanowires of different morphologies with nanometer resolution and has over 90% reliability in the testing dataset. The detection results are less affected by image complexity than the results of existing methods and demonstrate the good robustness of this algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动纳米操作的AFM图像中基于深度学习的纳米线检测
基于原子力显微镜(AFM)的纳米操作已被证明是一种将各种纳米颗粒组装成复杂图案和器件的可能方法。为了实现高效和全自动的纳米操作,必须精确和自动地识别基材上的纳米颗粒。本文研究了一种基于深度学习技术的柔性纳米线自动检测方法。采用基于You Only Look Once version 3 (YOLOv3)和全卷积网络(FCN)的实例分割网络对AFM图像中所有可移动纳米线进行分割。结合后续图像形态学和拟合算法,可以在高抽象水平上检测纳米线的姿态和位置。得益于这些算法,我们的程序能够以纳米分辨率自动检测不同形态的纳米线,并且在测试数据集中具有90%以上的可靠性。与现有检测方法相比,检测结果受图像复杂度的影响较小,具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes Effects of simulated zero gravity on adhesion, cell structure, proliferation, and growth behavior, in glioblastoma multiforme Electrode design for multimode suppression of aluminum nitride tuning fork resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1