Weihua Zhao, Imran Khan, Shelily F. Akhtar, Mujahed Al-Dhaifallah
{"title":"An Optimal Algorithm for Renewable Energy Generation Based on Neural Network","authors":"Weihua Zhao, Imran Khan, Shelily F. Akhtar, Mujahed Al-Dhaifallah","doi":"10.1155/2022/8072269","DOIUrl":null,"url":null,"abstract":"Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8072269","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells